Skip to main content
Log in

Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of the study was to determine the effects of an antioxidant supplementation, which includes coenzyme Q10, on plasma and neutrophil oxidative stress and the antioxidant response after a soccer match. Nineteen voluntary male pre-professional footballers were randomly and double-blinded treated with either a multivitamin and mineral supplement (n = 8) or a placebo (n = 11). After the 3 months of supplementation, the sportsmen played a friendly soccer match of 60 min. The 3-month supplementation induced higher plasma ascorbate and coenzyme Q levels when compared to the placebo group. Antioxidant supplementation influenced plasma oxidative stress markers because they were lower in the supplemented group than in the placebo one after the match. The football match induced decreased neutrophil vitamin E levels and catalase and glutathione peroxidase activities but increased glutathione reductase activity. Antioxidant diet supplementation prevented plasma oxidative damage but did not influence the neutrophil response to a football match.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aebi HE (1984) Catalase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 273–286

    Google Scholar 

  • Aguilo A, Tauler P, Fuentespina E, Tur JA, Cordova A, Pons A (2005) Antioxidant response to oxidative stress induced by exhaustive exercise. Physiol Behav 84:1–7. doi:10.1016/j.physbeh.2004.07.034

    Article  PubMed  CAS  Google Scholar 

  • Alleva R, Tomasetti M, Bompadre S, Littarru GP (1997) Oxidation of LDL and their subfractions: kinetic aspects and CoQ10 content. Mol Aspects Med 18(Suppl):S105–S112. doi:10.1016/S0098-2997(97)00039-3

    Article  PubMed  CAS  Google Scholar 

  • Arts FJ, Kuipers H (1994) The relation between power output, oxygen uptake and heart rate in male athletes. Int J Sports Med 15:228–231

    Article  PubMed  CAS  Google Scholar 

  • Balsom PD, Seger J, Sjodin B, Ekblom B (1992) Physiological response to maximal intensity intermittent exercise. Eur J Appl Physiol Occup Physiol 65:144–149. doi:10.1007/BF00705072

    Article  PubMed  CAS  Google Scholar 

  • Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res 40:445–453. doi:10.1080/10715760600617843

    Article  PubMed  CAS  Google Scholar 

  • Boyum A (1964) Separation of white blood cells. Nature 204:793–794. doi:10.1038/204793a0

    Article  PubMed  CAS  Google Scholar 

  • Cannon J, Blumberg JB (2000) Acute phase immune response in exercise. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier , Amsterdam, pp 177–194

    Chapter  Google Scholar 

  • Cases N, Aguilo A, Tauler P, Sureda A, Llompart I, Pons A et al (2005) Differential response of plasma and immune cell’s vitamin E levels to physical activity and antioxidant vitamin supplementation. Eur J Clin Nutr 59:781–788. doi:10.1038/sj.ejcn.1602143

    Article  PubMed  CAS  Google Scholar 

  • Cases N, Sureda A, Maestre I, Tauler P, Aguilo A, Cordova A et al (2006) Response of antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene expression in lymphocytes. Eur J Appl Physiol 98:263–269. doi:10.1007/s00421-006-0273-y

    Article  PubMed  CAS  Google Scholar 

  • Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20:591–598

    PubMed  CAS  Google Scholar 

  • Ernster L, Forsmark-Andree P (1993) Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig 71:S60–S65. doi:10.1007/BF00226842

    Article  PubMed  CAS  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121. doi:10.1016/S0076-6879(84)05015-1

    Article  PubMed  CAS  Google Scholar 

  • Goldberg DM, Spooner RJ (1985) Glutathione reductase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Verlag Chemie, Basel, pp 258–265

    Google Scholar 

  • Gomez-Cabrera MC, Borras C, Pallardo FV, Sastre J, Ji LL, Vina J (2005) Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. J Physiol 567:113–120. doi:10.1113/jphysiol.2004.080564

    Article  PubMed  CAS  Google Scholar 

  • Jackson MJ (1999) Free radicals in skin and muscle: damaging agents or signals for adaptation? Proc Nutr Soc 58:673–676. doi:10.1017/S0029665199001317

    Article  PubMed  CAS  Google Scholar 

  • Kagan T, Davis C, Lin L, Zakeri Z (1999) Coenzyme Q10 can in some circumstances block apoptosis, and this effect is mediated through mitochondria. Ann NY Acad Sci 887:31–47

    Article  PubMed  CAS  Google Scholar 

  • Kaikkonen J, Tuomainen TP, Nyyssonen K, Salonen JT (2002) Coenzyme Q10: absorption, antioxidative properties, determinants, and plasma levels. Free Radic Res 36:389–397. doi:10.1080/10715760290021234

    Article  PubMed  CAS  Google Scholar 

  • Karvonen J, Vuorimaa T (1988) Heart rate and exercise intensity during sport activities. Practical application. Sports Med 5:303–311. doi:10.2165/00007256-198805050-00002

    Article  PubMed  CAS  Google Scholar 

  • Krause R, Patruta S, Daxbock F, Fladerer P, Biegelmayer C, Wenisch C (2001) Effect of vitamin C on neutrophil function after high-intensity exercise. Eur J Clin Invest 31:258–263. doi:10.1046/j.1365-2362.2001.00797.x

    Article  PubMed  CAS  Google Scholar 

  • Langsjoen PH, Langsjoen AM (1999) Overview of the use of CoQ10 in cardiovascular disease. Biofactors 9:273–284

    PubMed  CAS  Google Scholar 

  • Lass A, Sohal RS (2000) Effect of coenzyme Q(10) and alpha-tocopherol content of mitochondria on the production of superoxide anion radicals. FASEB J 14:87–94

    PubMed  CAS  Google Scholar 

  • Levine RL, Williams JA, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357. doi:10.1016/S0076-6879(94)33040-9

    Article  PubMed  CAS  Google Scholar 

  • McArdle F, Pattwell DM, Vasilaki A, McArdle A, Jackson MJ (2005) Intracellular generation of reactive oxygen species by contracting skeletal muscle cells. Free Radic Biol Med 39:651–657. doi:10.1016/j.freeradbiomed.2005.04.010

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S et al (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84:1–6. doi:10.1007/s004210000342

    Article  PubMed  CAS  Google Scholar 

  • Morante M, Sandoval J, Gomez-Cabrera MC, Rodriguez JL, Pallardo FV, Vina JR et al (2005) Vitamin E deficiency induces liver nuclear factor-kappaB DNA-binding activity and changes in related genes. Free Radic Res 39:1127–1138. doi:10.1080/10715760500193820

    Article  PubMed  CAS  Google Scholar 

  • Nieman DC (1994) Exercise, upper respiratory tract infection, and the immune system. Med Sci Sports Exerc 26:128–139. doi:10.1249/00005768-199402000-00002

    Article  PubMed  CAS  Google Scholar 

  • Niklowitz P, Menke T, Andler W, Okun JG (2004) Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin Chim Acta 342:219–226. doi:10.1016/j.cccn.2003.12.020

    Article  PubMed  CAS  Google Scholar 

  • Ohno H, Yahata T, Sato Y, Yamamura K, Taniguchi N (1988) Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol Occup Physiol 57:173–176. doi:10.1007/BF00640658

    Article  PubMed  CAS  Google Scholar 

  • Overvad K, Diamant B, Holm L, Holmer G, Mortensen SA, Stender S (1999) Coenzyme Q10 in health and disease. Eur J Clin Nutr 53:764–770. doi:10.1038/sj.ejcn.1600880

    Article  PubMed  CAS  Google Scholar 

  • Petersen EW, Ostrowski K, Ibfelt T, Richelle M, Offord E, Halkjaer-Kristensen J et al (2001) Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise. Am J Physiol Cell Physiol 280:C1570–C1575

    PubMed  CAS  Google Scholar 

  • Podda M, Weber C, Traber MG, Milbradt R, Packer L (1999) Sensitive high-performance liquid chromatography techniques for simultaneous determination of tocopherols, tocotrienols, ubiquinols and ubiquinones in biological samples. In: Packer L (ed) Methods in enzymology. Oxidants and antioxidants. Academic Press, San Diego, pp 330–341

    Chapter  Google Scholar 

  • Radak Z, Kaneko T, Tahara S, Nakamoto H, Ohno H, Sasvari M et al (1999) The effect of exercise training on oxidative damage of lipids, proteins, and DNA in rat skeletal muscle: evidence for beneficial outcomes. Free Radic Biol Med 27:69–74. doi:10.1016/S0891-5849(99)00038-6

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Sasvari M, Nyakas C, Pucsok J, Nakamoto H, Goto S (2000) Exercise preconditioning against hydrogen peroxide-induced oxidative damage in proteins of rat myocardium. Arch Biochem Biophys 376:248–251. doi:10.1006/abbi.2000.1719

    Article  PubMed  CAS  Google Scholar 

  • Radak Z, Ogonovszky H, Dubecz J, Pavlik G, Sasvari M, Pucsok J et al (2003) Super-marathon race increases serum and urinary nitrotyrosine and carbonyl levels. Eur J Clin Invest 33:726–730. doi:10.1046/j.1365-2362.2003.01202.x

    Article  PubMed  CAS  Google Scholar 

  • Reid MB (2001) Invited review: redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731. doi:10.1063/1.1381002

    Article  PubMed  CAS  Google Scholar 

  • Sastre J, Asensi M, Gasco E, Pallardo FV, Ferrero JA, Furukawa T et al (1992) Exhaustive physical exercise causes oxidation of glutathione status in blood: prevention by antioxidant administration. Am J Physiol 263:R992–R995

    PubMed  CAS  Google Scholar 

  • Schroder H, Navarro E, Tramullas A, Mora J, Galiano D (2000) Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Int J Sports Med 21:146–150. doi:10.1055/s-2000-8870

    Article  PubMed  CAS  Google Scholar 

  • Sureda A, Tauler P, Aguilo A, Cases N, Fuentespina E, Cordova A et al (2005) Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 39:1317–1324. doi:10.1080/10715760500177500

    Article  PubMed  CAS  Google Scholar 

  • Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q et al (1999) Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol 87:1360–1367

    PubMed  CAS  Google Scholar 

  • Tauler P, Aguilo A, Cases N, Sureda A, Gimenez F, Villa G et al (2002a) Acute phase immune response to exercise coexists with decreased neutrophil antioxidant enzyme defences. Free Radic Res 36:1101–1107. doi:10.1080/1071576021000028334

    Article  PubMed  CAS  Google Scholar 

  • Tauler P, Aguilo A, Fuentespina E, Tur JA, Pons A (2002b) Diet supplementation with vitamin E, vitamin C and beta-carotene cocktail enhances basal neutrophil antioxidant enzymes in athletes. Pflugers Arch 443:791–797. doi:10.1007/s00424-001-0770-0

    Article  PubMed  CAS  Google Scholar 

  • Tauler P, Aguilo A, Gimeno I, Fuentespina E, Tur JA, Pons A (2003a) Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 446:658–664. doi:10.1007/s00424-003-1112-1

    Article  PubMed  CAS  Google Scholar 

  • Tauler P, Aguilo A, Gimeno I, Noguera A, Agusti A, Tur JA et al (2003b) Differential response of lymphocytes and neutrophils to high intensity physical activity and to vitamin C diet supplementation. Free Radic Res 37:931–938. doi:10.1080/1071576031000150454

    Article  PubMed  CAS  Google Scholar 

  • Tauler P, Sureda A, Cases N, Aguilo A, Rodriguez-Marroyo JA, Villa G et al (2006) Increased lymphocyte antioxidant defences in response to exhaustive exercise do not prevent oxidative damage. J Nutr Biochem 17:665–671. doi:10.1016/j.jnutbio.2005.10.013

    Article  PubMed  CAS  Google Scholar 

  • Thomas SR, Neuzil J, Stocker R (1996) Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler Thromb Vasc Biol 16:687–696

    PubMed  CAS  Google Scholar 

  • Tsao CS, Salimi SL (1982) Differential determination of L-ascorbic acid and D-isoascorbic acid by reversed-phase high-performance liquid chromatography with electrochemical detection. J Chromatogr A 245:355–358. doi:10.1016/S0021-9673(00)88023-1

    Article  CAS  Google Scholar 

  • Welch RW, Wang Y, Crossman A, Park JB, Kirk KL, Levine M (1995) Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 270:12584–12592. doi:10.1074/jbc.270.13.7047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been granted by the Spanish Ministry of Science and Education (DEP2005-00238-C04-01/EOU and DEP2005-00238-C04-02/EOU) and the FEDER funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Tauler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauler, P., Ferrer, M.D., Sureda, A. et al. Supplementation with an antioxidant cocktail containing coenzyme Q prevents plasma oxidative damage induced by soccer. Eur J Appl Physiol 104, 777–785 (2008). https://doi.org/10.1007/s00421-008-0831-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-008-0831-6

Keywords

Navigation