Skip to main content
Log in

Role of muscle mass on sprint performance: gender differences?

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine if gender differences in muscle mass explain the gender differences in running and cycling sprint performance. Body composition (dual-energy X-ray absorptiometry), and running (30 and 300 m test) and cycling (Wingate test) sprint performance were assessed in 123 men and 32 women. Peak power (PP) output in the Wingate test expressed per kg of lower extremities lean mass (LM) was similar in males and females (50.4 ± 5.6 and 50.5 ± 6.2 W kg−1, P = 0.88). No gender differences were observed in the slope of the linear relation between LM and PP or mean power output (MP). However, when MP was expressed per kg of LM, the males attained a 22% higher value (26.6 ± 3.4 and 21.9 ± 3.2 W kg−1, P < 0.001). The 30 and 300-m running time divided by the relative lean mass of the lower extremities (RLM = LM × 100/body mass) was significantly lower in males than in females. Although, the slope of the linear relationship between RLM and 300-m running time was not significantly different between genders, the males achieved better performance in the 300-m test than the females. The main factor accounting for gender differences in peak and mean power output during cycling is the muscle mass of the lower extremities. Although, the peak power generating capability of the muscle is similar in males and females, muscle mass only partially explains the gender difference in running sprints, even when expressed as a percentage of the whole body mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe T, Brechue WF, Fujita S, Brown JB (1998) Gender differences in FFM accumulation and architectural characteristics of muscle. Med Sci Sports Exerc 30:1066–1070

    Article  PubMed  CAS  Google Scholar 

  • Abe T, Fukashiro S, Harada Y, Kawamoto K (2001) Relationship between sprint performance and muscle fascicle length in female sprinters. J Physiol Anthropol Appl Human Sci 20:141–147

    Article  PubMed  CAS  Google Scholar 

  • Alway SE, Grumbt WH, Gonyea WJ, Stray-Gundersen J (1989) Contrasts in muscle and myofibers of elite male and female bodybuilders. J Appl Physiol 67:24–31

    PubMed  CAS  Google Scholar 

  • Ara I, Vicente-Rodriguez G, Perez-Gomez J, Jimenez-Ramirez J, Serrano-Sanchez J, Dorado C, Calbet J (2006) Influence of extracurricular sport activities on body composition and physical fitness in boys: a 3-year longitudinal study. Int J Obes (Lond) 30:1062–1071

    Article  CAS  Google Scholar 

  • Baker D, Nance S (1999) The relation between running speed and measures of strength and power in professional rugby league players. J Strength Cond Res 13:230–235

    Article  Google Scholar 

  • Bamman MM, Newcomer BR, Larson-Meyer DE, Weinsier RL, Hunter GR (2000) Evaluation of the strength–size relationship in vivo using various muscle size indices. Med Sci Sports Exerc 32:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Bar-Or O (1987) The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med 4:381–394

    Article  PubMed  CAS  Google Scholar 

  • Blackburn JT, Riemann BL, Padua DA, Guskiewicz KM (2004) Sex comparison of extensibility, passive, and active stiffness of the knee flexors. Clin Biomech (Bristol, Avon) 19:36–43

    Article  Google Scholar 

  • Blackburn JT, Padua DA, Weinhold PS, Guskiewicz KM (2006) Comparison of triceps surae structural stiffness and material modulus across sex. Clin Biomech (Bristol, Avon) 21:159–167

    Article  Google Scholar 

  • Booth FW, Thomason DB (1991) Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev 71:541–585

    PubMed  CAS  Google Scholar 

  • Borges O, Essen-Gustavsson B (1989) Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development. Acta Physiol Scand 136:29–36

    PubMed  CAS  Google Scholar 

  • Bottinelli R (2001) Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story? Pflugers Arch 443:6–17

    Article  PubMed  CAS  Google Scholar 

  • Calbet JA, Chavarren J, Dorado C (1997) Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 76:308–313

    Article  PubMed  CAS  Google Scholar 

  • Calbet JA, Dorado C, Diaz-Herrera P, Rodriguez-Rodriguez LP (2001) High femoral bone mineral content and density in male football (soccer) players. Med Sci Sports Exerc 33:1682–1687

    Article  PubMed  CAS  Google Scholar 

  • Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94:668–676

    PubMed  CAS  Google Scholar 

  • Cavagna GA, Komarek L, Mazzoleni S (1971) The mechanics of sprint running. J Physiol 217:709–721

    PubMed  CAS  Google Scholar 

  • Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G, Saltin B (1976) Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40:149–154

    PubMed  CAS  Google Scholar 

  • Cronin J, Sleivert G (2005) Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med 35:213–234

    Article  PubMed  Google Scholar 

  • Chelly SM, Denis C (2001) Leg power and hopping stiffness: relationship with sprint running performance. Med Sci Sports Exerc 33:326–333

    PubMed  CAS  Google Scholar 

  • Cheuvront SN, Carter R, Deruisseau KC, Moffatt RJ (2005) Running performance differences between men and women:an update. Sports Med 35:1017–1024

    Article  PubMed  Google Scholar 

  • Chleboun GS, Howell JN, Conatser RR, Giesey JJ (1997) The relationship between elbow flexor volume and angular stiffness at the elbow. Clin Biomech (Bristol, Avon) 12:383–392

    Article  Google Scholar 

  • Driss T, Vandewalle H, Monod H (1998) Maximal power and force–velocity relationships during cycling and cranking exercises in volleyball players. Correlation with the vertical jump test. J Sports Med Phys Fitness 38:286–293

    PubMed  CAS  Google Scholar 

  • Essen-Gustavsson B, Henriksson J (1984) Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise. Acta Physiol Scand 120:505–515

    Article  PubMed  CAS  Google Scholar 

  • Ford LE, Detterline AJ, Ho KK, Cao W (2000) Gender- and height-related limits of muscle strength in world weightlifting champions. J Appl Physiol 89:1061–1064

    PubMed  CAS  Google Scholar 

  • Gajdosik RL, Giuliani CA, Bohannon RW (1990) Passive compliance and length of the hamstring muscles of healthy men and women. Clin Biomech (Bristol, Avon) 5:23–29

    Article  Google Scholar 

  • Granata KP, Padua DA, Wilson SE (2002a) Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J Electromyogr Kinesiol 12:127–135

    Article  PubMed  CAS  Google Scholar 

  • Granata KP, Wilson SE, Padua DA (2002b) Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. J Electromyogr Kinesiol 12:119–126

    Article  PubMed  Google Scholar 

  • Green S (1995) Measurement of anaerobic work capacities in humans. Sports Med 19:32–42

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Fraser IG, Ranney DA (1984) Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J Neurol Sci 65:323–331

    Article  PubMed  CAS  Google Scholar 

  • Hill DW, Smith JC (1993) Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med 27:45–48

    PubMed  CAS  Google Scholar 

  • Jaworowski A, Porter MM, Holmback AM, Downham D, Lexell J (2002) Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol Scand 176:215–225

    Article  PubMed  CAS  Google Scholar 

  • Komi PV, Bosco C (1978) Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports 10:261–265

    PubMed  CAS  Google Scholar 

  • Komi PV, Karlsson J (1978) Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Physiol Scand 103:210–218

    PubMed  CAS  Google Scholar 

  • Korhonen MT, Mero A, Suominen H (2003) Age-related differences in 100-m sprint performance in male and female master runners. Med Sci Sports Exerc 35:1419–1428

    Article  PubMed  Google Scholar 

  • Kubo K, Kanehisa H, Fukunaga T (2003) Gender differences in the viscoelastic properties of tendon structures. Eur J Appl Physiol 88:520–526

    Article  PubMed  Google Scholar 

  • Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M (2000) Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 88:811–816

    PubMed  CAS  Google Scholar 

  • Leger LA, Mercier D, Gadoury C, Lambert J (1988) The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci 6:93–101

    PubMed  CAS  Google Scholar 

  • Lewis DA, Kamon E, Hodgson JL (1986) Physiological differences between genders. Implications for sports conditioning. Sports Med 3:357–369

    Article  PubMed  CAS  Google Scholar 

  • Lucia A, Olivan J, Gomez-Gallego F, Santiago C, Montil M, Foster C (2007) Citius and longius (faster and longer) with no alpha-actinin-3 in skeletal muscles? Br J Sports Med 41:616–617

    Article  PubMed  Google Scholar 

  • Luhtanen P, Komi PV (1980) Force-, power-, and elasticity–velocity relationships in walking, running, and jumping. Eur J Appl Physiol Occup Physiol 44:279–289

    Article  PubMed  CAS  Google Scholar 

  • MacArthur DG, North KN (2004) A gene for speed? The evolution and function of alpha-actinin-3. Bioessays 26:786–795

    Article  PubMed  CAS  Google Scholar 

  • Macarthur DG, Seto JT, Raftery JM, Quinlan KG, Huttley GA, Hook JW, Lemckert FA, Kee AJ, Edwards MR, Berman Y, Hardeman EC, Gunning PW, Easteal S, Yang N, North KN (2007) Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans. Nat Genet 39:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Madsen OR, Lauridsen UB, Hartkopp A, Sorensen OH (1997) Muscle strength and soft tissue composition as measured by dual energy X-ray absorptiometry in women aged 18–87 years. Eur J Appl Physiol Occup Physiol 75:239–245

    Article  PubMed  CAS  Google Scholar 

  • Malisoux L, Francaux M, Nielens H, Theisen D (2006) Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol 100:771–779

    Article  PubMed  Google Scholar 

  • Mayhew JL, Hancock K, Rollison L, Ball TE, Bowen JC (2001) Contributions of strength and body composition to the gender difference in anaerobic power. J Sports Med Phys Fitness 41:33–38

    PubMed  CAS  Google Scholar 

  • Meckel Y, Atterbom H, Grodjinovsky A, Ben-Sira D, Rotstein A (1995) Physiological characteristics of female 100 metre sprinters of different performance levels. J Sports Med Phys Fitness 35:169–175

    PubMed  CAS  Google Scholar 

  • Medbo JI, Tabata I (1993) Anaerobic energy release in working muscle during 30 s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660

    PubMed  CAS  Google Scholar 

  • Mero A, Luhtanen P, Viitasalo JT, Komi PV (1981) Relationship between the maximal running velocity, muscle fiber characteristics, force production and force relaxation of sprinters. Scand J Sports Sci 3:16–22

    Google Scholar 

  • Miller AE, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66:254–262

    Article  PubMed  CAS  Google Scholar 

  • Nesser TW, Latin RW, Berg K, Prentice E (1996) Physiological determinants of 40-meter sprint performance in young male athletes. J Strength Cond Res 10:263–267

    Article  Google Scholar 

  • Niemi AK, Majamaa K (2005) Mitochondrial DNA and ACTN3 genotypes in Finnish elite endurance and sprint athletes. Eur J Hum Genet 13:965–969

    Article  PubMed  CAS  Google Scholar 

  • Oatis CA (1993) The use of a mechanical model to describe the stiffness and damping characteristics of the knee joint in healthy adults. Phys Ther 73:740–749

    PubMed  CAS  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP, Spriet LL, Jones NL, Heigenhauser GJ (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Physiol 277:E890–E900

    PubMed  CAS  Google Scholar 

  • Prince FP, Hikida RS, Hagerman FC (1977) Muscle fiber types in women athletes and non-athletes. Pflugers Arch 371:161–165

    Article  PubMed  CAS  Google Scholar 

  • Riemann BL, DeMont RG, Ryu K, Lephart SM (2001) The effects of sex, joint angle, and the gastrocnemius muscle on passive ankle joint complex stiffness. J Athl Train 36:369–375

    PubMed  Google Scholar 

  • Russell B, Motlagh D, Ashley WW (2000) Form follows function: how muscle shape is regulated by work. J Appl Physiol 88:1127–1132

    PubMed  CAS  Google Scholar 

  • Sale DG, MacDougall JD, Alway SE, Sutton JR (1987) Voluntary strength and muscle characteristics in untrained men and women and male bodybuilders. J Appl Physiol 62:1786–1793

    PubMed  CAS  Google Scholar 

  • Schantz P, Randall-Fox E, Hutchison W, Tyden A, Astrand PO (1983) Muscle fibre type distribution, muscle cross-sectional area and maximal voluntary strength in humans. Acta Physiol Scand 117:219–226

    Article  PubMed  CAS  Google Scholar 

  • Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol 257:E567–E572

    PubMed  CAS  Google Scholar 

  • Simoneau JA, Bouchard C (1995) Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J 9:1091–1095

    PubMed  CAS  Google Scholar 

  • Tesch P, Karlsson J (1978) Isometric strength performance and muscle fibre type distribution in man. Acta Physiol Scand 103:47–51

    PubMed  CAS  Google Scholar 

  • van Ingen Schenau GJ, de Koning JJ, de Groot G (1994) Optimisation of sprinting performance in running, cycling and speed skating. Sports Med 17:259–275

    Article  PubMed  Google Scholar 

  • van Langendonck L, Claessens AL, Lysens R, Koninckx PR, Beunen G (2004) Association between bone, body composition and strength in premenarcheal girls and postmenopausal women. Ann Hum Biol 31:228–244

    Article  PubMed  Google Scholar 

  • Vandewalle H, Peres G, Monod H (1987) Standard anaerobic exercise tests. Sports Med 4:268–289

    PubMed  CAS  Google Scholar 

  • Vicente-Rodriguez G, Dorado C, Perez-Gomez J, Gonzalez-Henriquez J, Calbet J (2004) Enhanced bone mass and physical fitness in young female handball players. Bone 35:1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Weber CL, Schneider DA (2000) Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects. Eur J Appl Physiol 82:255–261

    Article  PubMed  CAS  Google Scholar 

  • Weber CL, Chia M, Inbar O (2006) Gender differences in anaerobic power of the arms and legs––a scaling issue. Med Sci Sports Exerc 38:129–137

    Article  PubMed  Google Scholar 

  • Weyand PG, Cureton KJ, Conley DS, Higbie EJ (1993) Peak oxygen deficit during one- and two-legged cycling in men and women. Med Sci Sports Exerc 25:584–591

    PubMed  CAS  Google Scholar 

  • Weyand PG, Sternlight DB, Bellizzi MJ, Wright S (2000) Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol 89:1991–1999

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank José Navarro de Tuero for his excellent technical assistance and to Fiona Wong for her wonderful editorial skills. This study was supported by grants from the Ministerio de Educación y Ciencia (BFI2003-09638, DEP2006-56076-C06-04/ACTI and FEDER) and the Gobierno de Canarias (PI2005/177). Special thanks are given to all subjects who volunteered for these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. L. Calbet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Gomez, J., Rodriguez, G.V., Ara, I. et al. Role of muscle mass on sprint performance: gender differences?. Eur J Appl Physiol 102, 685–694 (2008). https://doi.org/10.1007/s00421-007-0648-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0648-8

Keywords

Navigation