Skip to main content
Log in

Neuromuscular performance and bone structural characteristics in young healthy men and women

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Muscle mass and strength have been shown to be important factors in bone strength. Low muscular force predisposes to falling especially among elderly. Regular exercise helps to prevent falls and resulting bone fractures. Better understanding of muscle function and its importance on bone properties may thus add information to fracture prevention. Therefore the purpose of this study was to examine the relationship between bone strength and muscular force production. Twenty-young men [24 (2) years] and 20 [24 (3) years] women served as subjects. Bone compressive (BSId) and bending strength indices (50 Imax) were measured with peripheral quantitative computed tomography (pQCT) at tibial mid-shaft and at distal tibia. Ankle plantarflexor muscle volume (MV) was estimated from muscle thickness measured with ultrasonography. Neuromuscular performance was evaluated from the measurements of maximal ground reaction force (GRF) in bilateral jumping and of eccentric maximal voluntary ankle plantarflexor torque (MVC). Specific tension (ST) of the plantarflexors was calculated by dividing the MVC with the muscle volume. Activation level (AL) was measured with superimposed twitch method. Distal tibia BSId and tibial mid-shaft 50 Imax correlated positively with GRF, MVC and MV in men (r = 0.45–0.67, P < 0.05). Tibial mid-shaft 50 Imax and neuromuscular performance variables were correlated in women (r = 0.46–0.59, P < 0.05), whereas no correlation was seen in distal tibia. In the regression analysis, MV and ST could explain 64% of the variance in tibial mid-shaft bone strength and 41% of the variation in distal tibia bone strength. The study emphasizes that tibial strength is related to maximal neuromuscular performance. In addition, tibial mid-shaft seems to be more dependent on the neuromuscular performance, than distal tibia. In young adults, the association between bone adaptation and neuromuscular performance seems to be moderate and also site and loading specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Allen GM, McKenzie DK, Gandevia SC (1998) Twitch interpolation of the elbow flexor muscles at high forces. Muscle Nerve 21:318–328

    Article  PubMed  CAS  Google Scholar 

  • Babault N, Pousson M, Ballay Y, Van Hoecke J (2001) Activation of human quadriceps femoris during isometric, concentric, and eccentric contractions. J Appl Physiol 91:2628–2634

    PubMed  CAS  Google Scholar 

  • Blain H, Vuillemin A, Teissier A, Hanesse B, Guillemin F, Jeandel C (2001) Influence of muscle strength and body weight and composition on regional bone mineral density in healthy women aged 60 years and over. Gerontology 47:207–212

    Article  PubMed  CAS  Google Scholar 

  • Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12:1547–1551

    Article  PubMed  CAS  Google Scholar 

  • Calbet JA, Diaz Herrera P, Rodriguez LP (1999) High bone mineral density in male elite professional volleyball players. Osteoporos Int 10:468–474

    Article  PubMed  CAS  Google Scholar 

  • Calmels P, Vico L, Alexandre C, Minaire P (1995) Cross-sectional study of muscle strength and bone mineral density in a population of 106 women between the ages of 44 and 87 years: relationship with age and menopause. Eur J Appl Physiol Occup Physiol 70:180–186

    Article  PubMed  CAS  Google Scholar 

  • Carter DR, Van Der Meulen MC, Beaupre GS (1996) Mechanical factors in bone growth and development. Bone 18:5S–10S

    Article  PubMed  CAS  Google Scholar 

  • Carter ND, Kannus P, Khan KM (2001) Exercise in the prevention of falls in older people: a systematic literature review examining the rationale and the evidence. Sports Med 31:427–438

    Article  PubMed  CAS  Google Scholar 

  • Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767

    Article  PubMed  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton, pp 194–244

    Google Scholar 

  • Ducher G, Courteix D, Meme S, Magni C, Viala JF, Benhamou CL (2005) Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players. Bone 37:457–466

    Article  PubMed  CAS  Google Scholar 

  • Ferretti JL, Cointry GR, Capozza RF, Frost HM (2003) Bone mass, bone strength, muscle−bone interactions, osteopenias and osteoporoses. Mech Ageing Dev 124:269–279

    Article  PubMed  Google Scholar 

  • Fitts RH, McDonald KS, Schluter JM (1991) The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. J Biomech 24(Suppl 1):111–122

    Article  PubMed  Google Scholar 

  • Frost HM (1997) Indirect way to estimate peak joint loads in life and in skeletal remains (insights from a new paradigm). Anat Rec 248:475–483

    Article  PubMed  CAS  Google Scholar 

  • Frost HM (2000) Muscle, bone, and the Utah paradigm: a 1999 overview. Med Sci Sports Exerc 32:911–917

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga T, Miyatani M, Tachi M, Kouzaki M, Kawakami Y, Kanehisa H (2001) Muscle volume is a major determinant of joint torque in humans. Acta Physiol Scand 172:249–255

    Article  PubMed  CAS  Google Scholar 

  • Gass M, Dawson-Hughes B (2006) Preventing osteoporosis-related fractures: an overview. Am J Med 119:S3–S11

    Article  PubMed  Google Scholar 

  • Heaney RP (2003) Is the paradigm shifting? Bone 33:457–465

    Article  PubMed  Google Scholar 

  • Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348:1343–1347

    Article  PubMed  CAS  Google Scholar 

  • Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29:388–392

    Article  PubMed  CAS  Google Scholar 

  • Heinonen A, Sievanen H, Kannus P, Oja P, Vuori I (2002) Site-specific skeletal response to long-term weight training seems to be attributable to principal loading modality: a pQCT study of female weightlifters. Calcif Tissue Int 70:469–474

    Article  PubMed  CAS  Google Scholar 

  • Ikai M, Fukunaga T (1968) Calculation of muscle strength per unit cross-sectional area of human muscle by means of ultrasonic measurement. Int Z Angew Physiol 26:26–32

    PubMed  CAS  Google Scholar 

  • Jarvinen TL, Kannus P, Sievanen H (2003) Estrogen and bone—a reproductive and locomotive perspective. J Bone Miner Res 18:1921–1931

    Article  PubMed  Google Scholar 

  • Kent-Braun JA, Le Blanc R (1996) Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve 19:861–869

    Article  PubMed  CAS  Google Scholar 

  • Komi PV, Fukashiro S, Jarvinen M (1992) Biomechanical loading of Achilles tendon during normal locomotion. Clin Sports Med 11:521–531

    PubMed  CAS  Google Scholar 

  • Lynch NA, Metter EJ, Lindle RS, Fozard JL, Tobin JD, Roy TA, Fleg JL, Hurley BF (1999) Muscle quality. I. Age-associated differences between arm and leg muscle groups. J Appl Physiol 86:188–194

    PubMed  CAS  Google Scholar 

  • Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H (2006) Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39:598–608

    Article  PubMed  Google Scholar 

  • Martyn-St James M, Carroll S (2006) High-intensity resistance training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 17:1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Maughan RJ, Nimmo MA (1984) The influence of variations in muscle fibre composition on muscle strength and cross-sectional area in untrained males. J Physiol 351:299–311

    PubMed  CAS  Google Scholar 

  • Merton PA (1954) Voluntary strength and fatigue. J Physiol 123:553–564

    PubMed  CAS  Google Scholar 

  • Miyatani M, Kanehisa H, Ito M, Kawakami Y, Fukunaga T (2004) The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol 91:264–272

    Article  PubMed  Google Scholar 

  • Moreland JD, Richardson JA, Goldsmith CH, Clase CM (2004) Muscle weakness and falls in older adults: a systematic review and meta-analysis. J Am Geriatr Soc 52:1121–1129

    Article  PubMed  Google Scholar 

  • Narici MV, Reeves ND, Morse CI, Maganaris CN (2004) Muscular adaptations to resistance exercise in the elderly. J Musculoskelet Neuronal Interact 4:161–164

    PubMed  CAS  Google Scholar 

  • Nicol C, Komi PV, Horita T, Kyrolainen H, Takala TE (1996) Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol Occup Physiol 72:401–409

    Article  PubMed  CAS  Google Scholar 

  • Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20:520–528

    Article  PubMed  Google Scholar 

  • Nikander R, Sievanen H, Uusi-Rasi K, Heinonen A,Kannus P (2006) Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone 39:886–894

    Article  PubMed  Google Scholar 

  • Nordstrom P, Thorsen K, Nordstrom G, Bergstrom E, Lorentzon R (1995) Bone mass, muscle strength, and different body constitutional parameters in adolescent boys with a low or moderate exercise level. Bone 17:351–356

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom P, Thorsen K, Bergstrom E, Lorentzon R (1996) High bone mass and altered relationships between bone mass, muscle strength, and body constitution in adolescent boys on a high level of physical activity. Bone 19:189–195

    Article  PubMed  CAS  Google Scholar 

  • Oskouei MA, Van Mazijk BC, Schuiling MH, Herzog W (2003) Variability in the interpolated twitch torque for maximal and submaximal voluntary contractions. J Appl Physiol 95:1648–1655

    PubMed  CAS  Google Scholar 

  • Pettersson U, Nordstrom P, Lorentzon R (1999) A comparison of bone mineral density and muscle strength in young male adults with different exercise level. Calcif Tissue Int 64:490–498

    Article  PubMed  CAS  Google Scholar 

  • Pettersson U, Alfredson H, Nordstrom P, Henriksson-Larsen K, Lorentzon R (2000) Bone mass in female cross-country skiers: relationship between muscle strength and different BMD sites. Calcif Tissue Int 67:199–206

    Article  PubMed  CAS  Google Scholar 

  • Ribom E, Ljunggren O, Piehl-Aulin K, Ljunghall S, Bratteby LE, Samuelson G, Mallmin H (2004) Muscle strength correlates with total body bone mineral density in young women but not in men. Scand J Med Sci Sports 14:24–29

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom P, Jonsson P, Lorentzon R, Thorsen K (2000) Bone mineral density and muscle strength in female ice hockey players. Int J Sports Med 21:524–528

    Article  PubMed  CAS  Google Scholar 

  • Schonau E (2004) The peak bone mass concept: is it still relevant? Pediatr Nephrol 19:825–831

    Article  PubMed  Google Scholar 

  • Specker B, Binkley T, Fahrenwald N (2004) Rural versus nonrural differences in BMC, volumetric BMD, and bone size: a population-based cross-sectional study. Bone 35:1389–1398

    Article  PubMed  Google Scholar 

  • Stackhouse SK, Dean JC, Lee SC, Binder-MacLeod SA (2000) Measurement of central activation failure of the quadriceps femoris in healthy adults. Muscle Nerve 23:1706–1712

    Article  PubMed  CAS  Google Scholar 

  • Stevens JA, Olson S (2000) Reducing falls and resulting hip fractures among older women. MMWR Recomm Rep 49:3–12

    PubMed  CAS  Google Scholar 

  • Suominen H (2006) Muscle training for bone strength. Aging Clin Exp Res 18:85–93

    PubMed  Google Scholar 

  • Taaffe DR, Marcus R (2004) The muscle strength and bone density relationship in young women: dependence on exercise status. J Sports Med Phys Fitness 44:98–103

    PubMed  CAS  Google Scholar 

  • Taaffe DR, Pruitt L, Lewis B, Marcus R (1995) Dynamic muscle strength as a predictor of bone mineral density in elderly women. J Sports Med Phys Fitness 35:136–142

    PubMed  CAS  Google Scholar 

  • Van Buskirk WC (1989) Elementary stress analysis of the femur and tibia. In: Cowin SC (ed) Bone mechanics. CRC, Florida, pp 43–51

Download references

Acknowledgments

The study was funded by the Academy of Finland. The authors would like to thank Ph. D. Vincent Martin, Ph. D. Masaki Ishikawa, MSc. Merja Hoffren and Mr. Matthew Holmes for their valuable help in the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rantalainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rantalainen, T., Heinonen, A., Komi, P.V. et al. Neuromuscular performance and bone structural characteristics in young healthy men and women. Eur J Appl Physiol 102, 215–222 (2008). https://doi.org/10.1007/s00421-007-0575-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-007-0575-8

Keywords

Navigation