Skip to main content

Advertisement

Log in

Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

Abstract

Purpose

Multiple chemical sensitivity (MCS) is a prevalent medically unexplained symptom characterized by symptom reactions to everyday chemical exposure below hygienic thresholds. The aim of this study was to investigate the expressions of hyper-reactivity in MCS during whole-body exposure to low concentrations of the odorant n-butanol.

Methods

We exposed 18 participants with MCS and 18 non-ill controls to a low concentration of the odorant n-butanol using an exposure chamber. The first 10 min constituted blank exposure, after which the n-butanol concentration increased and reached a plateau at 11.5 mg/m3.

Results

MCS participants, compared with controls, reported greater perceived odor intensities, more unpleasantness to the exposure and increasing symptoms over time. MCS participants also expressed higher pulse rate and lower pulse rate variability than controls did. No group differences were found for breathing rate or tonic electrodermal activity responses.

Conclusions

We conclude that MCS sufferers differ from healthy controls in terms of autonomic responses, symptoms and chemosensory perception during chemical exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersson L, Bende M, Millqvist E, Nordin S (2009) Attention bias and sensitization in chemical sensitivity. J Psychosom Res 66:407–416. doi:10.1016/j.jpsychores.2008.11.005

    Article  Google Scholar 

  • Andersson L, Claeson A-S, Ledin L et al (2013) The influence of health-risk perception and distress on reactions to low-level chemical exposure. Front Psychol 4:816. doi:10.3389/fpsyg.2013.00816

    Google Scholar 

  • Andersson L, Claeson A-S, Nyberg L et al (2014) Brain responses to olfactory and trigeminal exposure in idiopathic environmental illness (IEI) attributed to smells—an fMRI study. J Psychosom Res. doi:10.1016/j.jpsychores.2014.09.014

    Google Scholar 

  • Barsky AJ, Goodson JD, Lane RS, Cleary PD (1988) The amplification of somatic symptoms. Psychosom Med 50:510–519

    Article  CAS  Google Scholar 

  • Bascom R, Meggs WJ, Frampton M et al (1997) Neurogenic inflammation: with additional discussion of central and perceptual integration of nonneurogenic inflammation. Environ Health Perspect 105(Suppl 2):531–537

    Article  Google Scholar 

  • Bell IR (1996) Clinically relevant EEG studies and psychophysiological findings: possible neural mechanisms for multiple chemical sensitivity. Toxicology 111:101–117

    Article  CAS  Google Scholar 

  • Bell IR, Miller CS, Schwartz GE (1992) An olfactory-limbic model of multiple chemical sensitivity syndrome: possible relationships to kindling and affective spectrum disorders. Biol Psychiatry 32:218–242

    Article  CAS  Google Scholar 

  • Bell IR, Baldwin CM, Schwartz GE (2001) Sensitization studies in chemically intolerant individuals: implications for individual difference research. Ann N Y Acad Sci 933:38–47

    Article  CAS  Google Scholar 

  • Berg ND, Linneberg A, Dirksen A, Elberling J (2008) Prevalence of self-reported symptoms and consequences related to inhalation of airborne chemicals in a Danish general population. Int Arch Occup Environ Health 81:881–887. doi:10.1007/s00420-007-0282-0

    Article  CAS  Google Scholar 

  • Borg E, Borg G (2002) A comparison of AME and CR100 for scaling perceived exertion. Acta Psychol 109:157–175. doi:10.1016/S0001-6918(01)00055-5

    Article  Google Scholar 

  • Brüning T, Bartsch R, Bolt HM et al (2014) Sensory irritation as a basis for setting occupational exposure limits. Arch Toxicol 88:1855–1879. doi:10.1007/s00204-014-1346-z

    Article  Google Scholar 

  • Cain WS (1989) Testing olfaction in a clinical setting. Ear Nose Throat J 68:322–332

    Google Scholar 

  • Caress SM, Steinemann AC (2003) A review of a two-phase population study of multiple chemical sensitivities. Environ Health Perspect 111:1490–1497. doi:10.1289/ehp.5940

    Article  Google Scholar 

  • Caress SM, Steinemann AC (2004) Prevalence of multiple chemical sensitivities: a population-based study in the southeastern United States. Am J Public Health 94:746–747

    Article  Google Scholar 

  • Carlsson F, Karlson B, Ørbaek P et al (2005) Prevalence of annoyance attributed to electrical equipment and smells in a Swedish population, and relationship with subjective health and daily functioning. Public Health 119:568–577. doi:10.1016/j.puhe.2004.07.011

    Article  CAS  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates Inc, Hillsdale, New Jersey

  • Dalton PH, Jaén C (2010) Responses to odors in occupational environments. Curr Opin Allergy Clin Immunol 10:127–132. doi:10.1097/ACI.0b013e3283373470

    Article  Google Scholar 

  • Dantoft TM, Elberling J, Brix S et al (2014) An elevated pro-inflammatory cytokine profile in multiple chemical sensitivity. Psychoneuroendocrinology 40:140–150. doi:10.1016/j.psyneuen.2013.11.012

    Article  CAS  Google Scholar 

  • Das-Munshi J, Rubin GJ, Wessely S (2007) Multiple chemical sensitivities: review. Curr Opin Otolaryngol Head Neck Surg 15:274–280. doi:10.1097/MOO.0b013e328259c360

    Article  Google Scholar 

  • Derogatis LR, Rickels K, Rock AF (1976) The SCL-90 and the MMPI: a step in the validation of a new selfreport scale. Br J Psychiatry 128:280–289

    Article  CAS  Google Scholar 

  • De Luca C, Scordo MG, Cesareo E et al (2010) Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol Appl Pharmacol 248:285–292. doi:10.1016/j.taap.2010.04.017

    Article  Google Scholar 

  • De Luca C, Raskovic D, Pacifico V et al (2011) The search for reliable biomarkers of disease in multiple chemical sensitivity and other environmental intolerances. Int J Environ Res Public Health 8:2770–2797. doi:10.3390/ijerph8072770

    Article  Google Scholar 

  • Doty RL, Deems DA, Frye RE et al (1988) Olfactory sensitivity, nasal resistance, and autonomic function in patients with multiple chemical sensitivities. Arch Otolaryngol Head Neck Surg 114:1422–1427

    Article  CAS  Google Scholar 

  • Fridell M, Cesarec Z, Johansson M, Thorsen SM (2002) SCL-90 Svensk normering, standardisering och validering av symtomskalan. Statens institutionsstyrelse SiS, Stockholm

  • Gil E, Orini M, Bailón R et al (2010) Photoplethysmography pulse rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. Physiol Meas 31:1271–1290. doi:10.1088/0967-3334/31/9/015

    Article  CAS  Google Scholar 

  • Hausteiner C, Bornschein S, Hansen J et al (2005) Self-reported chemical sensitivity in Germany: a population-based survey. Int J Hyg Environ Health 208:271–278. doi:10.1016/j.ijheh.2005.03.006

    Article  CAS  Google Scholar 

  • Hillert L, Musabasic V, Berglund H et al (2007) Odor processing in multiple chemical sensitivity. Hum Brain Mapp 28:172–182. doi:10.1002/hbm.20266

    Article  Google Scholar 

  • Hillert L, Jovanovic H, Åhs F, Savic I (2013) Women with multiple chemical sensitivity have increased harm avoidance and reduced 5-HT(1A) receptor binding potential in the anterior cingulate and amygdala. PLoS One 8:e54781. doi:10.1371/journal.pone.0054781

    Article  CAS  Google Scholar 

  • Johansson A, Brämerson A, Millqvist E et al (2005) Prevalence and risk factors for self-reported odour intolerance: the Skövde population-based study. Int Arch Occup Environ Health 78:559–564. doi:10.1007/s00420-005-0616-8

    Article  CAS  Google Scholar 

  • Kärnekull SC, Jönsson FU, Larsson M, Olofsson JK (2011) Affected by smells? Environmental chemical responsivity predicts odor perception. Chem Senses 36:641–648. doi:10.1093/chemse/bjr028

    Article  Google Scholar 

  • Kreutzer R, Neutra RR, Lashuay N (1999) Prevalence of people reporting sensitivities to chemicals in a population-based survey. Am J Epidemiol 150:1–12

    Article  CAS  Google Scholar 

  • Labarge AS, McCaffrey RJ (2000) Multiple chemical sensitivity: a review of the theoretical and research literature. Neuropsychol Rev 10:183–211

    Article  CAS  Google Scholar 

  • Lacour M, Zunder T, Schmidtke K et al (2005) Multiple chemical sensitivity syndrome (MCS)—suggestions for an extension of the US MCS-case definition. Int J Hyg Environ Health 208:141–151. doi:10.1016/j.ijheh.2005.01.017

    Article  Google Scholar 

  • Magnavita N (2001) Cacosmia in healthy workers. Br J Med Psychol 74:121–127

    Article  CAS  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904. doi:10.1152/physrev.00041.2006

    Article  Google Scholar 

  • Meggs WJ (1993) Neurogenic inflammation and sensitivity to environmental chemicals. Environ Health Perspect 101:234–238

    Article  CAS  Google Scholar 

  • Multiple chemical sensitivity (1999) A 1999 consensus. Arch Environ Health 54:147–9. doi: 10.1080/00039899909602251

  • Nethercott JR, Davidoff LL, Curbow B, Abbey H (1993) Multiple chemical sensitivities syndrome: toward a working case definition. Arch Environ Health 48:19–26. doi:10.1080/00039896.1993.9938389

    Article  CAS  Google Scholar 

  • Nordin M, Nordin S (2013) Psychometric evaluation and normative data of the Swedish version of the 10-item perceived stress scale. Scand J Psychol 54:502–507. doi:10.1111/sjop.12071

    Article  Google Scholar 

  • Nordin S, Millqvist E, Löwhagen O, Bende M (2003) The chemical sensitivity scale: psychometric properties and comparison with the noise sensitivity scale. J Environ Psychol 23:359–367. doi:10.1016/S0272-4944(03)00002-1

    Article  Google Scholar 

  • Nordin S, Martinkauppi M, Olofsson J et al (2005) Chemosensory perception and event-related potentials in self-reported chemical hypersensitivity. Int J Psychophysiol 55:243–255. doi:10.1016/j.ijpsycho.2004.08.003

    Article  Google Scholar 

  • Österberg K, Ørbæk P, Karlson B et al (2003) Annoyance and performance during the experimental chemical challenge of subjects with multiple chemical sensitivity. Scand J Work Environ Health 29:40–50. doi:10.5271/sjweh.703

    Article  Google Scholar 

  • Pall ML (2003) Elevated nitric oxide/peroxynitrite theory of multiple chemical sensitivity: central role of N-methyl-D-aspartate receptors in the sensitivity mechanism. Environ Health Perspect 111:1461–1464. doi:10.1289/ehp.5935

    Article  CAS  Google Scholar 

  • Papo D, Eberlein-König B, Berresheim H-W et al (2006) Chemosensory function and psychological profile in patients with multiple chemical sensitivity: comparison with odor-sensitive and asymptomatic controls. J Psychosom Res 60:199–209. doi:10.1016/j.jpsychores.2005.06.075

    Article  Google Scholar 

  • Park J, Knudson S (2007) Medically unexplained physical symptoms. Health Rep 18:43–47. doi:10.2165/00128415-200812110-00006

    Google Scholar 

  • Ruth JH (1986) Odor thresholds and irritation levels of several chemical substances: a review. Am Ind Hyg Assoc J 47:A142–A151

    Article  CAS  Google Scholar 

  • Schäfer A, Vagedes J (2013) How accurate is pulse rate variability as an estimate of heart rate variability?: A review on studies comparing photoplethysmographic technology with an electrocardiogram. Int J Cardiol 166:15–29. doi:10.1016/j.ijcard.2012.03.119

    Article  Google Scholar 

  • Siegel S, Kreutzer R (1997) Pavlovian conditioning and multiple chemical sensitivity. Environ Health Perspect 105(Suppl 2):521

    Article  Google Scholar 

  • Sorg BA (1999) Multiple chemical sensitivity: potential role for neural sensitization. Crit Rev Neurobiol 13:283–316

    CAS  Google Scholar 

  • Sterling P (2004) Principles of allostasis: optimal design, predictive regulation, pathophysiology and rational therapeutics. In: Schulkin J (ed) Allostasis, homeostasis, and the costs of adaptation, 1st edn. Cambridge University Press, Cambridge, UK, pp 1–36

    Google Scholar 

  • Sullivan JB, Bell IR, Meggs WJ (2001) Low-level chemical sensitivity and chemical intolerance. In: Sullivan JB, Krieger GR (eds) Clinical environmental health and toxic exposures, 2nd edn. Lippincott Williams and Wilkins, Philadelphia, pp 412–430

    Google Scholar 

  • Thayer JF, Sternberg E (2006) Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci 1088:361–372. doi:10.1196/annals.1366.014

    Article  CAS  Google Scholar 

  • Tran MTD, Arendt-Nielsen L, Kupers R, Elberling J (2013) Multiple chemical sensitivity: on the scent of central sensitization. Int J Hyg Environ Health 216:202–210. doi:10.1016/j.ijheh.2012.02.010

    Article  CAS  Google Scholar 

  • Uhde E, Salthammer T (2007) Impact of reaction products from building materials and furnishings on indoor air quality—a review of recent advances in indoor chemistry. Atmos Environ 41:3111–3128. doi:10.1016/j.atmosenv.2006.05.082

    Article  CAS  Google Scholar 

  • Van den Bergh O, Devriese S, Winters W et al (2001) Acquiring symptoms in response to odors: a learning perspective on multiple chemical sensitivity. Ann N Y Acad Sci 933:278–290

    Article  Google Scholar 

  • Witthöft M, Gerlach AL, Bailer J (2006) Selective attention, memory bias, and symptom perception in idiopathic environmental intolerance and somatoform disorders. J Abnorm Psychol 115:397–407. doi:10.1037/0021-843X.115.3.397

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish Research Council for Health, Working Life and Welfare (2011-0396), the Danish Ministry of the Environment, the Swedish Research Council Formas (2010-1401) and the Swedish Foundation for Humanities and Social Sciences (M14-0375:1).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards and approved by the Ethics Committee at Umeå University (Dnr 2013-19-31). Informed consent was obtained from all individual participants included in the study. All participants were given written and oral information about the study. All participants were given 500 SEK (~50 EUR) for their participation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linus Andersson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, L., Claeson, AS., Dantoft, T.M. et al. Chemosensory perception, symptoms and autonomic responses during chemical exposure in multiple chemical sensitivity. Int Arch Occup Environ Health 89, 79–88 (2016). https://doi.org/10.1007/s00420-015-1053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-015-1053-y

Keywords

Navigation