Skip to main content
Log in

Exposure of healthy subjects with emissions from a gas metal arc welding process: part 3—biological effect markers and lung function

  • Original Article
  • Published:
International Archives of Occupational and Environmental Health Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Metal active gas welding (MAG) is a widely-used welding technique resulting in high emissions of welding fume particles. This study investigated whether short-term exposure to these fume particles results in changes in lung function and early stages of inflammatory reactions.

Methods

Twelve healthy, young male subjects were exposed to MAG fumes for 6 h with three different exposure concentrations in a three-fold cross-over study design. Exposure was performed in the “Aachen Workplace Simulation Laboratory” under controlled conditions with constant fume concentration. Fume concentrations were 0, 1, and 2.5 mg m−3 in randomized order. Before and after each exposure, spirometry, and impulse oscillometry were performed and breath condensate samples were collected in order to quantify inflammatory markers like Nitrate, Nitrite, Nitrotyrosine, Hydroxyprolin and Malondialdehyde.

Results

A significant dependency on the exposure concentration could not be established for any of the endpoint parameters.

Conclusion

In healthy, young subjects neither changes in spirometry nor changes in inflammatory markers measured in exhaled breath condensate could be detected after short-term exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • André E, Stoeger T, Takenaka S et al (2006) Inhalation of ultrafine carbon particles triggers biphasic pro-inflammatory response in the mouse lung. Eur Respir J 28:275–285

    Article  Google Scholar 

  • Antonini JM, Clarke RW, Krishna Murthy GG et al (1998) Freshly generated stainless steel welding fume induces greater lung inflammation in rats as compared to aged fume. Toxicol Lett 98:77–86

    Article  CAS  Google Scholar 

  • Antonini JM, Lewis AB, Roberts JR, Whaley DA (2003) Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am J Ind Med 43:350–360

    Article  CAS  Google Scholar 

  • Araneda OF, Garcia C, Lagos N et al (2005) Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol 95:383–390

    Article  CAS  Google Scholar 

  • Balint B, Donnelly LE, Hanazawa T, Kharitonov SA, Barnes PJ (2001) Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke. Thorax 56:456–461

    Article  CAS  Google Scholar 

  • Borm PJA (2004) Partikeltoxikologie: Vom Steinkohlenbergbau zur Nanotechnologie. Zbl Arbeitsmed 54:188–197

    CAS  Google Scholar 

  • Brand P, Gube M, Gerards K et al (2010) Internal exposure, effect monitoring and lung function in welders after acute short term exposure to welding fumes from different welding processes. J Occup Environ Med 52:887–892

    Article  CAS  Google Scholar 

  • Brand P, Havlicek P, Steiners M, Holzinger K, Reisgen U, Kraus T, Gube M (2012) Exposure of healthy subjects with emissions from a gas metal arc welding process: part 1—exposure technique and external exposure. Int Arch Occup Environ Health. doi:10.1007/s00420-012-0739-7

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area. Toxicol Appl Pharmacol 175:191–199

    Article  CAS  Google Scholar 

  • Caglieri A, Goldoni M, Acampa O et al (2006) The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers. Environ Health Perspect 114:542–546

    Article  CAS  Google Scholar 

  • Choi JY, Lee SH, Na HB, An K, Hyeon T, Seo TS (2009) In vitro cytotoxicity screening of water-dispersible metal oxide nanoparticles in human cell lines. Bioprocess Biosyst Eng 33:21–30

    Article  Google Scholar 

  • Conventz A, Musiol A, Brodowsky C et al (2007) Simultaneous determination of 3-nitrotyrosine, tyrosine, hydroxyproline and proline in exhaled breath condensate by hydrophilic interaction liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of Chromatography B 860:78–85

    Article  CAS  Google Scholar 

  • Corradi M, Gergelova P, Mutti A (2010) Use of exhaled breath condensate to investigate occupational lung diseases. Curr Opin Allergy Clin Immunol 10:93–98

    Article  CAS  Google Scholar 

  • Effros RM, Hoagland KW, Bosbous M et al (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669

    Google Scholar 

  • Gube M, Brand P, Conventz A et al (2009) Spirometry, impulse oscillometry and capnovolumetry in welders and healthy male subjects. Respir Med 103:1350–1357

    Article  Google Scholar 

  • Gube M, Ebel J, Brand P et al (2010) Biological effect markers in exhaled breath condensate and biomonitoring in welders: impact of smoking and protection equipment. Int Arch Occup Environ Health 83:803–811

    Article  CAS  Google Scholar 

  • Gube M, Brand P, Schettgen T, Bertram J, Gerards K, Reisgen U, Kraus T (2012) Experimental exposure of healthy subjects with emissions from a gas metal arc welding process—part II: biomonitoring of chromium and nickel. Int Arch Occup Environ Health. doi:10.1007/s00420-012-0738-8

  • Han SG, Kim Y, Kashon ML, Pack DL, Castranova V, Vallyathan V (2005) Correlates of oxidative stress and free-radical activity in serum from asymptomatic shipyard welders. Am J Respir Crit Care Med 172:1541–1548

    Article  Google Scholar 

  • Hurley J, Cherrie J, Donaldson K, Seaton A, Tran C (2003) Assessment of health effects of long-term occupational exposure to tunnel dust in the London underground. Research report TM/03/02

  • Kaminski H, John AC, Asbach C et al (2009) Investigation of physico-chemical and toxicological properties of particles emitted from different welding processes. Poster presented at AAAR. Minneapolis

  • Kim J, Chen J, Boyce P, Christiani D (2005) Exposure to welding fumes is associated with acute systemic inflammatory responses. Occup Environ Med 62:157–163

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Müller W (2004) Health effects of ultrafine particles. J Aerosol Sci 35:1155–1156

    Article  Google Scholar 

  • Monteiller C, Tran L, MacNee W et al (2007) The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 64:609–615

    Article  CAS  Google Scholar 

  • Mur JM, Teculescu D, Pham QT et al (1985) Lung function and clinical findings in a cross-sectional study of arc welders. An epidemiological study. Int Arch Occup Environ Health 57:1–17

    Article  CAS  Google Scholar 

  • Murgia N, Muzi G, Dell’ Omo M et al (2006) Induced sputum, exhaled breath condensate and nasal lavage fluid in electroplating workers exposed to chromium. Int J Immunopathol Pharmacol 19:67–71

    CAS  Google Scholar 

  • Oberdörster G, Ferin J, Finkelstein G, Wade P, Corson N (1990) Increased pulmonary toxicity of ultrafine particles? II. Lung lavage studies. J Aerosol Sci 21:384–387

    Article  Google Scholar 

  • Oberdörster G, Gelein RM, Ferin J, Weiss B (1995) Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhal Toxicol 7:111–124

    Article  Google Scholar 

  • Oxhoj H, Bake B, Wedel H, Wilhelmsen L (1979) Effects of electric arc welding on ventilatory lung function. Arch Environ Health 34:211–217

    CAS  Google Scholar 

  • Palmer KT, McNeill Love RM, Poole JR et al (2006) Inflammatory responses to the occupational inhalation of metal fume. Eur Respir J 27:366–373

    Article  CAS  Google Scholar 

  • Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Eur Respir J 6:5–40

    Google Scholar 

  • Romieu I, Barraza-Villarreal A, Escamilla-Nunez C et al (2008) Exhaled breath malondialdehyde as a marker of effect of exposure to air pollution in children with asthma. J Allergy Clin Immunol 121:903–909 e906

    Article  CAS  Google Scholar 

  • Scharrer E, Hessel H, Kronseder A et al (2007) Heart rate variability, hemostatic and acute inflammatory blood parameters in healthy adults after short-term exposure to welding fume. Int Arch Occup Environ Health 80:265–272

    Article  CAS  Google Scholar 

  • Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  • Sjogren B, Gyntelberg F, Hilt B (2006) Ischemic heart disease and welding in Scandinavian studies. Scand J Work Environ Health 2(Suppl):50–53

    Google Scholar 

  • Sjögren B, Fossum T, Lindh T, Weiner J (2002) Welding and ischemic heart disease. Int J Occup Environ Health 8:309–311

    Google Scholar 

  • Tessier DM, Pascal LE (2006) Activation of MAP kinases by hexavalent chromium, manganese and nickel in human lung epithelial cells. Toxicol Lett 167:114–121

    Article  CAS  Google Scholar 

  • TS A (1995) Standardization of spirometry: 1994 update. Am J Respir Crit Care Med 152:1107–1136

    Google Scholar 

  • Ueno T, Kataoka M, Hirano A et al (2008) Inflammatory markers in exhaled breath condensate from patients with asthma. Respirology 13:654–663

    Article  Google Scholar 

  • Wiebert P, Sanchez-Crespo A, Seitz J et al (2006) Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 28:286–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by DFG and RWTH Aachen University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Brand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brand, P., Bischof, K., Siry, L. et al. Exposure of healthy subjects with emissions from a gas metal arc welding process: part 3—biological effect markers and lung function. Int Arch Occup Environ Health 86, 39–45 (2013). https://doi.org/10.1007/s00420-012-0740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00420-012-0740-1

Keywords

Navigation