Skip to main content
Log in

General three-dimensional scattering and dynamic stress concentration of Lamb-like waves in a spherical shell with a spherical inclusion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Three-dimensional scattering and dynamic stress concentration of Lamb-like waves around a spherical inclusion (inhomogeneity and a cavity) in a thick spherical shell are investigated theoretically and numerically. Two spherical coordinates, located at the spherical shell center and the inclusion center, are established to express the incident and scattered wave potential functions. By a kind of addition formulas, all the potential functions can be transformed into the same coordinate, then the analytical solution of the displacements and stresses are derived, and all the undetermined coefficients are solved by satisfying the boundary condition and the interface condition. In order to describe the 3-D stresses concentration, multiple DSCFs are employed and the 3-D distributions are depicted. The results reveal the influences of inclusion material and the cavity on the distributions of DSCFs, and the influence of incident wave frequency and inclusion position are also calculated. This research is expected to provide theoretical understanding on dynamic analysis and mechanical properties evaluation of the spherical shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(A_{11}^\mathrm{I} , C_{11}^\mathrm{I} \) :

Amplitude coefficients for incident P- and SV-waves, respectively

\(A_{{L}'}^{22} , B_{{L}'}^{22} \) and \(C_{{L}'}^{22} \) :

Scattered wave amplitudes for \(\hbox {S1}\) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

\(\tilde{A}_L^{11} , \tilde{B}_L^{11} \) and \(\tilde{C}_L^{11} \) :

Scattered wave amplitudes for \(\hbox {S2}\) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

:

Scattered wave amplitudes for \(\hbox {S3}\) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

\(A_L^{21} , B_L^{21} \) and \(C_L^{21} \) :

Scattered wave amplitudes for \(\hbox {S1}\) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

\(\tilde{A}_{{L}'}^{12} , \tilde{B}_{{L}'}^{12} \) and \(\tilde{C}_{{L}'}^{12} \) :

Scattered wave amplitudes for \(\hbox {S2}\) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

:

Scattered wave amplitudes for \(\hbox {S3}\) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

\(b_l \) :

Represents the different kinds of spherical Bessel functions

c :

Dimensionless thickness

\(D_{{L}'}^{22} , E_{{L}'}^{22} \) and \(F_{{L}'}^{22} \) :

Amplitudes for standing waves \(\hbox {F}\) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

\(e_i \) :

Residual

\(\mathbf{e}_\mathrm{r} \) :

Unit vector in radial direction

\(\hbox {F}\) :

Superscript standing wave in the inclusion

\(h_l^{\left( 1 \right) } , h_l^{\left( 2 \right) } \) :

Spherical Hankel functions of the first and the second kind

\(\hbox {I}\) :

Superscript for incident waves

\(j_l \) :

Spherical Bessel functions of the first kind

K :

Wave number

l :

The index for \(Y_{lm} \,\,j_l \), \(h_l^{\left( 1 \right) } \) and \(h_l^{\left( 2 \right) } \) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

L :

Logogram for \(\left( {l,m} \right) \) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

\({l}'\) :

The index for \(Y_{{l}'{m}'} \,\,j_{{l}'} \), \(h_{{l}'}^{\left( 1 \right) } \) and \(h_{{l}'}^{\left( 2 \right) } \) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

\({L}'\) :

Logogram for \(\left( {{l}',{m}'} \right) \) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

m :

The index for \(Y_{lm} \) in the coordinate \(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \)

\({m}'\) :

The index for \(Y_{{l}'{m}'} \) in the coordinate \(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \)

\(\mathbf{n}\) :

Direction vector of the incident wave

\(P_l^m \) :

Associated Legendre function

r and R :

The inner and the outer radius of the shell

\(r_0 \) :

The radius of the inclusion

\(\bar{{R}}\) :

Dimensionless outer radius

\(\bar{{R}}_{12} \) :

Dimensionless distance between the two origins

\(\bar{{r}}\) :

The dimensionless radius of the inclusion

\(\left( {r_1 ,\theta _1 ,\varphi _1 } \right) \) :

The spherical coordinate with the origin \(O_1 \) located at the shell center

\(\left( {r_2 ,\theta _2 ,\varphi _2 } \right) \) :

The spherical coordinate with the origin \(O_2 \) located at the inclusion center

\(\hbox {S1}\) :

Superscript for the scattered waves by inclusion

\(\hbox {S2}\) :

Superscript for the scattered waves by inner shell

\(\hbox {S3}\) :

Superscript for the scattered waves by outer shell

t :

Time

\(\mathbf{u}\) :

Displacement vector

\(Y_{lm} \) :

Spherical harmonic function

\(\bar{{Y}}_{lm} \) :

The complex conjugate of \(Y_{lm} \)

\(\alpha \) :

Wave number for P-wave

\(\alpha _1 \) :

P-wave number in the shell as known constant

\(\alpha _2 \) :

P-wave number in the inclusion as known constant

\(\bar{{\alpha }}_1 \) :

Dimensionless frequency P-wave number in the shell

\(\bar{{\alpha }}_2 \) :

Dimensionless frequency SV-wave number in the inclusion

\(\beta \) :

Wave number for SV-wave and SH-wave

\(\beta _1 \) :

SV- and SH-wave number in the shell as known constant

\(\beta _2 \) :

SV- and SH-wave number in the inclusion as known constant

\(\bar{{\beta }}_1 \) :

Dimensionless frequency SV- and SH-wave number in the shell

\(\bar{{\beta }}_2 \) :

Dimensionless frequency SV- and SH-wave number in the inclusion

\(\delta \) :

Ratio of elastic modulus

\(\eta , \psi \) and \(\chi \) :

Potential function for P-, SH- and SV-waves, respectively

\(\eta _{11}^\mathrm{I} , \chi _{11}^\mathrm{I} \) :

Potential function for incident waves of P- and SV-waves

\(\eta _{22}^{\mathrm{S1}} , \psi _{22}^{\mathrm{S1}} \) and \(\chi _{22}^{\mathrm{S1}} \) :

Potential function for scattered waves \(\hbox {S1}\) of P-, SH- and SV-waves, respectively

\(\eta _{22}^{\mathrm{S2}} , \psi _{22}^{\mathrm{S2}} \) and \(\chi _{22}^{\mathrm{S2}} \) :

Potential function for scattered waves \(\hbox {S2}\) of P-, SH- and SV-waves, respectively

\(\eta _{22}^{\mathrm{S3}} , \psi _{22}^{\mathrm{S3}} \) and \(\chi _{22}^{\mathrm{S3}} \) :

Potential function for scattered waves \(\hbox {S3}\) of P-, SH- and SV-waves, respectively

\(\eta ^{\mathrm{F}}, \psi ^{\mathrm{F}}\) and \(\chi ^{\mathrm{F}}\) :

Potential function for standing \(\hbox {F}\) of P-, SH- and SV-waves, respectively

\(\lambda \) and \(\mu \) :

Láme constants

\(\lambda _1 \) and \(\mu _1 \) :

The Láme constants of the shell

\(\lambda _2 \) and \(\mu _2 \) :

The Láme constants of the inclusion

\(\nu \) :

Poisson’s ratio

\(\left( {\theta _0 ,\varphi _0 } \right) \) :

Azimuth of incident wave

\(\rho \) :

Density

\(\rho _1 \) :

The density of the shell

\(\rho _2 \) :

The density of the inclusion

\(\left| {\sigma _{rr}^{*} } \right| , \left| {\sigma _{\theta \theta }^{*} } \right| , \left| {\sigma _{\varphi \varphi }^{*} } \right| , \left| {\sigma _{r\theta }^{*} } \right| \) :

DSCFs for the inclusion

\(\left| {\sigma _{\theta \theta }^{*} } \right| , \left| {\sigma _{\varphi \varphi }^{*} } \right| \) :

DSCFs for the cavity

\(\sigma _0 \) :

The amplitude of stress of incident wave

\(\omega \) :

Angular frequency

\(\bar{{\omega }}\) :

Dimensionless frequency

References

  1. Vemula, C., Norris, A.N.: Scattering of flexural waves on thin plates. J. Sound Vib. 181, 115–125 (1995)

    Article  Google Scholar 

  2. Vemula, C., Norris, A.N.: Flexural wave propagation and scattering on thin plates using Mindlin theory. Wave Motion 26, 1–12 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Squire, V.A., Dixon, T.W.: Scattering of flexural waves from a coated cylindrical anomaly in a thin plate. J. Sound Vib. 236, 367–373 (2000)

    Article  MATH  Google Scholar 

  4. Peng, S.Z., Pan, J.: Acoustical wave propagator for time-domain dynamic stress concentration in a plate with a sharp change of section. J. Acoust. Soc. Am. 117, 492–502 (2005)

    Article  Google Scholar 

  5. Ma, J., Simonetti, F., Lowe, M.J.S.: Scattering of the fundamental torsional mode by an axisymmetric layer in a pipe. J. Acoust. Soc. Am. 120, 1871–1880 (2006)

    Article  Google Scholar 

  6. Ying, C.F., Truell, R.: Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid. J. Appl. Phys. 27, 1086–1097 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, S.W., Wang, B.L., Ma, X.R.: Scattering of elastic wave and dynamic stress concentrations in thin plate with a circular hole. Eng. Mech. 18, 14–20 (2001)

    Article  Google Scholar 

  8. Gao, S.W., Wang, Y.S., Zhang, Z.M., Ma, X.R.: Dual reciprocity boundary element method for flexural waves in thin plate with cutout. Appl. Math. Mech. 26, 1564–1573 (2005)

    Article  MATH  Google Scholar 

  9. Niu, Y., Dravinski, M.: Direct 3D BEM for scattering of elastic waves in a homogeneous anisotropic half-space. Wave Motion 38, 165–175 (2003)

    Article  MATH  Google Scholar 

  10. Benites, R., Aki, K., Yomogida, K.: Multiple scattering of SH waves in 2-D media with many cavities. Pure Appl. Geophys. 138, 353–390 (1992)

    Article  Google Scholar 

  11. DeSanto, J.: Theory of scattering from multilayered bodies of arbitrary shape. Wave Motion 2, 63–73 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, X.Q., Hu, C., Huang, W.H.: Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves. Eur. J. Mech. A Solids 26, 1016–1028 (2007)

    Article  MATH  Google Scholar 

  13. Shah, A.H., Wong, K.C., Datta, S.K.: Surface displacements due to elastic wave scattering by buried planar and non-planar cracks. Wave Motion 7, 319–333 (1985)

    Article  MATH  Google Scholar 

  14. Kaplunov, J.D., Kossovich, L.Y., Nolde, E.V.: Dynamics of Thin Walled Elastic Bodies. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  15. Veksler, N.D.: Resonance Acoustic Spectroscopy, Springer Series on Wave Phenomena, pp. 186–205. Springer, Berlin (1993)

  16. Kuznetsov, S.V.: Fundamental and singular solutions of equilibrium equations for media with arbitrary elastic anisotropy. Q. Appl. Math. 63, 455–467 (2005)

    Article  Google Scholar 

  17. Kuznetsov, S.V.: Direct boundary integral equation method in the theory of elasticity. Q. Appl. Math. 53, 1–8 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kubenko, V.D., Dzyuba, V.V.: Resonance phenomena in cylindrical shell with a spherical inclusion in the presence of an internal compressible liquid and an external elastic medium. J. Fluids Struct. 22, 577–594 (2006)

    Article  MATH  Google Scholar 

  19. Li, F.M., Hu, C., Huang, W.H.: Elastic wave scattering and dynamic stress concentration in cylindrical shells with a circular cutout. J. Sound Vib. 259, 1209–1223 (2003)

    Article  Google Scholar 

  20. Decanini, Y., Folacci, A., Gabrielli, P., Rossi, J.L.: Algebraic aspects of multiple scattering by two parallel cylinders: classification and physical interpretation of scattering resonances. J. Sound Vib. 221, 785–804 (1999)

    Article  Google Scholar 

  21. Lee, W.M., Chen, J.T.: Scattering of flexural wave in a thin plate with multiple circular holes by using the multipole Trefftz method. Int. J. Solids Struct. 47, 1118–1129 (2010)

    Article  MATH  Google Scholar 

  22. Gabrielli, P., Mercier-Finidori, M.: Acoustic scattering by two spheres: multiple scattering and symmetry concentrations. J. Sound Vib. 241, 423–439 (2001)

    Article  Google Scholar 

  23. Zhang, Y., Wei, P.: The scattering of acoustic wave by a chain of elastic spheres in liquid. J. Vib. Acoust. 136, 021023-1–021023-7 (2014)

    Google Scholar 

  24. Wu, J.H., Liu, A.Q., Chen, H.L., Chen, T.N.: Multiple scattering of a spherical acoustic wave from fluid spheres. J. Sound Vib. 290, 17–33 (2006)

    Article  Google Scholar 

  25. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic Stress Concentration, Chap. 6.2. Crane and Russak, New York (1973)

Download references

Acknowledgements

Project supported by the National Natural Science Foundation of China (Project No. 11302023) and Fundamental Research Funds for the Central Universities (Project No. FRF-TP-14-030A1) are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinchun Shang.

Appendices

Appendix 1: The relation between the incident wave amplitudes \(A_{11}^\mathrm{I} \) and \(C_{11}^\mathrm{I} \)

As it is described in Fig. 22, the incident waves are coupled by the P- and SV-wave of the same incident angle \(\left( {\theta _0 ,\varphi _0 } \right) \).

In the Cartesian coordinate system \(\left( {x_1 ,y_1 ,z_1 } \right) \) the potential functions for the incident wave can be presented as:

$$\begin{aligned} \eta _{11}^\mathrm{I}= & {} A_{11}^\mathrm{I} \exp \left[ {\hbox {i}\alpha _1 \left( {x_1 \sin \theta _0 \cos \varphi _0 +y_1 \sin \theta _0 \sin \varphi _0 +z_1 \cos \theta _0 } \right) -\omega t} \right] \end{aligned}$$
(59)
$$\begin{aligned} \chi _{11}^\mathrm{I}= & {} C_{11}^\mathrm{I} \exp \left[ {\hbox {i}\beta _1 \left( {x_1 \sin \theta _0 \cos \varphi _0 +y_1 \sin \theta _0 \sin \varphi _0 +z_1 \cos \theta _0 } \right) -\omega t} \right] \end{aligned}$$
(60)

where \(A_{11}^\mathrm{I} \), \(C_{11}^\mathrm{I} \) refer to the amplitudes of P-wave and SV-wave, and \(\alpha _1 \), \(\beta _1 \) denote the wave number for P-wave and SV-wave, respectively.

Fig. 22
figure 22

The location of the incident wave plane

As it is well known that P- and SV-wave propagate in the same wave plane, which means that the projection of displacements on the normal of the wave plane is equal to 0. For convenience, the plane which is perpendicular to \(x_1 o_1 y_1 \) is assumed as the wave plane, and the normal of the wave plane is given as

$$\begin{aligned} \mathbf{N}=\sin \varphi _N \mathbf{e}_x -\cos \varphi _N \mathbf{e}_y \end{aligned}$$
(61)

with \(\varphi _N =\varphi _0 -\pi /2\).

In this case, \(\mathbf{u}\) can be rewritten as

$$\begin{aligned} \mathbf{u}=\exp \left( {\hbox {i}\omega t} \right) \left( {\nabla \eta +\nabla \times \left( {\psi \mathbf{e}_z } \right) +\nabla \times \nabla \times \left( {\chi \mathbf{e}_z } \right) } \right) \end{aligned}$$
(62)

where \(\nabla \) means the Laplace operator in the Cartesian coordinate system. Thus, from the equation that

$$\begin{aligned} \mathbf{u}\cdot \mathbf{N}=0 \end{aligned}$$
(63)

the relation between the amplitudes \(A_{11}^\mathrm{I} \) and \(C_{11}^\mathrm{I} \) is obtained

$$\begin{aligned} \frac{A_{11}^\mathrm{I} }{C_{11}^\mathrm{I} }=\frac{\beta _1^2 \cos \theta _0 }{\alpha _1 } \end{aligned}$$
(64)

It is obviously that the relation is independent of the assumption of the wave plane.

Appendix 2: The addition formula for \(h_l^{\left( 2 \right) } \bar{{Y}}_{{l}'{m}'} \)

In this appendix expansion form of the addition formula into the series in terms of \(h_l^{\left( 2 \right) } \bar{{Y}}_{{l}'{m}'} \) is derived. As shown in Fig. 23, \(O_1 \) and \(O_2 \) are the two origins of the different spherical coordinates,

Fig. 23
figure 23

The relation among \(\mathbf{r}_1 \), \(\mathbf{r}_2 \) and \(\mathbf{R}_{12} \)

The bicentric expansion form of Green function is expressed as [24] :

$$\begin{aligned} G\left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right)= & {} 8\mathop {\sum }\limits _L {\mathop {\sum }\limits _{{L}'} {\mathop {\sum }\limits _{{L}''} {\left( {-1} \right) ^{l+1}i^{l+{l}'+{l}''}Q_{{L}''} \left( {L{L}'} \right) } } }\nonumber \\&\times F_{l{l}'{l}''} \left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right) Y_{lm} \left( {\theta _0 ,\varphi _0 } \right) \bar{{Y}}_{{l}'{m}'} \left( {\theta _2 ,\varphi _2 } \right) \bar{{Y}}_{{l}''{m}''} \left( {\theta _{12} ,\varphi _{12} } \right) \end{aligned}$$
(65)

where

$$\begin{aligned} Q_{{l}''} \left( {l{l}'} \right) =\left( {-1} \right) ^{m}\left[ {\frac{\left( {2l+1} \right) \left( {2{l}'+1} \right) \left( {2{l}''+1} \right) }{4\pi }} \right] ^{1/2}\left( {{\begin{array}{l@{\quad }l@{\quad }l} l&{} {{l}'}&{} {{l}''} \\ 0&{} 0&{} 0 \\ \end{array} }} \right) \left( {{\begin{array}{l@{\quad }l@{\quad }l} l&{} {{l}'}&{} {{l}''} \\ {-m}&{} {{m}'}&{} {-{m}''} \\ \end{array} }} \right) \end{aligned}$$
(66)

And the radial coefficient is given by

$$\begin{aligned} F_{l{l}'{l}''} \left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right) =\int _0^\infty {\frac{q^{2}j_l \left( {qr_0 } \right) j_{{l}'} \left( {qr_2 } \right) j_{{l}''} \left( {qR_{12} } \right) }{q^{2}-K^{2}}} dq \end{aligned}$$
(67)

and as it is known Eq. (67) in the region \(I(r_0 +r_2 \le R_{12} )\) is obtained as following [24]:

$$\begin{aligned} F_{l{l}'{l}''}^{\left( I \right) } \left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right) =\frac{\pi \hbox {i}}{2}Kj_l \left( {Kr_0 } \right) j_{{l}'} \left( {Kr_2 } \right) h_{_{{l}''} }^{\left( 1 \right) } \left( {KR_{12} } \right) \end{aligned}$$
(68)

And the bicentric expansion form Eq. (65) is rewritten as

$$\begin{aligned} G\left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right) =\hbox {i}K\mathop {\sum }\limits _L {\mathop {\sum }\limits _{{L}'} {F_{L{L}'}^{\left( 1 \right) } \left( {K\mathbf{R}_{12} } \right) j_l \left( {Kr_0 } \right) j_{{l}'} \left( {Kr_2 } \right) Y_{lm} \left( {\theta _0 ,\varphi _0 } \right) \bar{{Y}}_{{l}'{m}'} \left( {\theta _2 ,\varphi _2 } \right) } } \end{aligned}$$
(69)

with

$$\begin{aligned} F_{L{L}'}^{\left( 1 \right) } \left( {K\mathbf{R}_{12} } \right) =\mathop {\sum }\limits _{{L}''} {4\pi \left( {-1} \right) ^{l}\hbox {i}^{l+{l}'+{l}''}Q_{{L}''} \left( {L{L}'} \right) h_{{l}''}^{\left( 1 \right) } \left( {KR_{12} } \right) \bar{{Y}}_{{l}''{m}''} \left( {\theta _{12} ,\varphi _{12} } \right) } \end{aligned}$$
(70)

Similarly, in the region II (\(r_2 +R_{12} <r_0 \)), the integral in Eq. (67) can be calculated by contour integral as

$$\begin{aligned} F_{l{l}'{l}''}^{\left( {II} \right) } \left( {\mathbf{r}_0 ,\mathbf{r}_2 ,\mathbf{R}_{12} ;K} \right) =\frac{\pi \hbox {i}}{2}Kh_l^{\left( 2 \right) } \left( {Kr_0 } \right) j_{{l}'} \left( {Kr_0 } \right) j_{{l}''} \left( {KR_{12} } \right) \end{aligned}$$
(71)

Furthermore, let \(\lim R_{12} \rightarrow 0\), the classical expansion of Green function can be obtained from Eq. (71)

$$\begin{aligned} G\left( {\mathbf{r}_1 ,\mathbf{r}_0 } \right) =\hbox {i}K\mathop {\sum }\limits _L {h_l^{\left( 2 \right) } \left( {Kr_1 } \right) j_l \left( {Kr_0 } \right) Y_{lm} \left( {\theta _0 ,\varphi _0 } \right) Y_{lm}^{*} \left( {\theta _1 ,\varphi _1 } \right) } \quad \left( {r_0 >r_1 } \right) \end{aligned}$$
(72)

According to the orthotropic character of \(Y_{lm} \), the following addition formula can be deduced

$$\begin{aligned} h_l^{\left( 2 \right) } \left( {Kr_1 } \right) \bar{{Y}}_{lm} \left( {\theta _1 ,\varphi _1 } \right)= & {} \mathop {\sum }\limits _{{L}'} \mathop {\sum }\limits _{{L}''} 4\pi \left( {-1} \right) ^{l}\hbox {i}^{l+{l}'+{l}''}Q_{{L}'} \left( {L,{L}'} \right) h_{{l}''}^{\left( 1 \right) } \left( {KR_{12} } \right) \bar{{Y}}_{{l}''{m}''} \left( {\theta _{12} ,\varphi _{12} } \right) j_{{l}'} \left( {Kr_2 } \right) \bar{{Y}}_{{l}'{m}'} \nonumber \\&\quad \left( {\theta _2 ,\varphi _2 } \right) \quad (r_2 \le R_{12} ) \end{aligned}$$
(73)

Appendix 3: The elements in Eqs. (29)–(31), and (37)–(44)

The expression of \(T_{ij,l}^\gamma \) and \(T_{5w,l}^\gamma \) in Eqs. (29)–(31) is listed as follows:

$$\begin{aligned} T_{11,l}^\gamma \left( {r_1 } \right)= & {} 2\mu _1 \left( {\frac{l^{2}-l}{r_1^2 }b_l \left( {\alpha _1 r_1 } \right) -\frac{1}{2}\beta _1^2 b_l \left( {\alpha _1 r_1 } \right) +\frac{2\alpha _1 }{r_1 }b_{l+1} \left( {\alpha _1 r_1 } \right) } \right) ;\\ T_{12,l}^\gamma \left( {r_1 } \right)= & {} 2\mu _1 \;l\left( {l+1} \right) \left( {\frac{l-1}{r_1^2 }b_l \left( {\beta _1 r_1 } \right) -\frac{\beta _1 }{r_1^2 }b_{l+1} \left( {\beta _1 r_1 } \right) } \right) ;\\ T_{21,l}^\gamma \left( {r_1 } \right)= & {} 2\mu _1 \left( {\frac{l-1}{r_1^2 }b_l \left( {\alpha _1 r_1 } \right) -\frac{\alpha _1 }{r_1 }b_{l+1} \left( {\alpha _1 r_1 } \right) } \right) ;\\ T_{22,l}^\gamma \left( {r_1 } \right)= & {} \mu _1 \left( {\frac{2\beta _1 }{r_1 }b_{l+1} \left( {\beta _1 r_1 } \right) +\frac{2\left( {l^{2}-1} \right) }{r_1^2 }b_l \left( {\beta _1 r_1 } \right) -\beta _1^2 b_l \left( {\beta _1 r_1 } \right) } \right) \\ T_{5w,l}^\gamma \left( {r_1 } \right)= & {} \frac{l-1}{r_1 }b_l \left( {\alpha _1 r_1 } \right) -\alpha _1 b_{l+1} \left( {\alpha _1 r_1 } \right) . \end{aligned}$$

\(T_{ij,l}^\gamma (i=1,2;j=1,2)\) and \(T_{5w,l}^\gamma (w=7,8,9)\) stand for the radial coefficients of stresses, in which the superscript \(\gamma =\hbox {S}1\), \(\hbox {S2}\), \(\hbox {S3}\) and \(\hbox {I}\) correspond to the cases of the scattered waves evoked from the inclusion, the inner boundary, the outer boundary in the shell and the case of the incident waves, respectively. Also, for the case \(\gamma =\hbox {S}1\), \(\hbox {S2}\), \(\hbox {S3}\) and \(\hbox {I}\), \(b_l \) is accordingly taken as \(h_l^{\left( 1 \right) } \), \(h_l^{\left( 1 \right) } \), \(h_l^{\left( 2 \right) } \) and \(j_l \).

The expression of \(\Gamma _{ij,{l}'}^\gamma \), \(\Gamma _{3w,{l}'}^\gamma \), \(U_{ij,{l}'}^\gamma \) and \(U_{3w,{l}'}^\gamma \) in Eqs. (37)–(44) is listed as follows

$$\begin{aligned} \Gamma _{11,{l}'}^\gamma \left( {r_2 } \right)= & {} -\lambda _k \alpha _k^2 b_{{l}'} \left( {\alpha _k r_2 } \right) +2\mu _k \left( {\frac{2\alpha _k }{r_2 }b_{{l}'+1} \left( {\alpha _k r_2 } \right) +\frac{{l}'^{2}-{l}'}{r_2^2 }b_{{l}'} \left( {\alpha _k r_2 } \right) -\alpha _k^2 b_{{l}'} \left( {\alpha _k r_2 } \right) } \right) ;\\ \Gamma _{12,{l}'}^\gamma \left( {r_2 } \right)= & {} 2\mu _k \;{l}'\left( {{l}'+1} \right) \left( {\frac{{l}'-1}{r_2^2 }b_{{l}'} \left( {\beta _k r_2 } \right) -\frac{\beta _k }{r_2^2 }b_{{l}'+1} \left( {\beta _k r_2 } \right) } \right) ;\\ \Gamma _{21,{l}'}^\gamma= & {} 2\mu _k \left( {\frac{{l}'-1}{r_2^2 }b_{{l}'} \left( {\alpha _k r_2 } \right) -\frac{\alpha _k }{r_2 }b_{{l}'+1} \left( {\alpha _k r_2 } \right) } \right) ;\\ \Gamma _{22,{l}'}^\gamma= & {} \mu _k \left( {\frac{2\beta _k }{r_2 }b_{{l}'+1} \left( {\beta _k r_2 } \right) +\frac{2\left( {{l}'^{2}-1} \right) }{r_2^2 }b_{{l}'} \left( {\beta _k r_2 } \right) -\beta _k^2 b_{{l}'} \left( {\beta _k r_2 } \right) } \right) ;\\ T_{3w,{l}'}^\gamma \left( {r_2 } \right)= & {} \frac{{l}'-1}{r_2 }b_{{l}'} \left( {\alpha _k r_2 } \right) -\alpha _k b_{{l}'+1} \left( {\alpha _k r_2 } \right) ;\\ U_{11,{l}'}^\gamma \left( {r_2 } \right)= & {} \frac{{l}'}{r_2 }b_{{l}'} \left( {\alpha _k r_2 } \right) -\alpha _1 b_{{l}'+1} \left( {\alpha _k r_2 } \right) ; \quad U_{12,{l}'}^\gamma ={l}'\left( {{l}'+1} \right) \frac{b_{{l}'} \left( {\beta _k r_2 } \right) }{r_2 };\\ U_{21,{l}'}^\gamma= & {} \frac{b_{{l}'} \left( {\alpha _k r_2 } \right) }{r_2 }; \quad U_{22,{l}'}^\gamma =\frac{{l}'+1}{r_2 }b_{{l}'} \left( {\beta _k r_2 } \right) -\beta _k b_{{l}'+1} \left( {\beta _k r_2 } \right) ; \quad U_{3w,{l}'}^\gamma =b_{{l}'} \left( {\alpha _k r_2 } \right) . \end{aligned}$$

\(\Gamma _{ij,{l}'}^\gamma (i=1,2;j=1,2)\) and \(\Gamma _{3w,{l}'}^\gamma (w=1,7,8,9)\) stands for the radial coefficients of stresses, \(U_{ij,{l}'}^\gamma \) and \(U_{3w,{l}'}^\gamma \) stand for the radial coefficients of displacements, in which the superscript \(\gamma =\hbox {S}1\), \(\hbox {S2}\), \(\hbox {S3}\), \(\hbox {I}\) and \(\hbox {F}\) correspond to the cases of the scattered waves evoked from the inclusion, the inner boundary, the outer boundary in the shell, the case of the incident waves and the case of the standing waves in the inclusion, respectively. Also, for the case \(\gamma =\hbox {S}1\), \(\hbox {S2}\), \(\hbox {S3}\), \(\hbox {I}\) and \(\hbox {F}\), \(b_l \) is accordingly taken as \(h_l^{\left( 1 \right) } \), \(h_l^{\left( 1 \right) } \), \(h_l^{\left( 2 \right) } \) and \(j_l \). Meanwhile, \(k=1\) when \(\gamma =\hbox {S}1\), \(\hbox {S2}\), \(\hbox {S3}\) and \(\hbox {I}\); \(k=2\) when \(\gamma =\hbox {F}\)

Appendix 4: The solution processes for the unknown coefficients

From the boundary conditions (48) and interface conditions (50), the amplitudes \(A_{L_2 }^{\mathrm{S}1} \), \(C_{L_2 }^{\mathrm{S}1} \), \(A_{L_1 }^{\mathrm{S2}} \), \(C_{L_1 }^{\mathrm{S2}} \), \(A_{L_1 }^{\mathrm{S3}} \), \(C_{L_1 }^{\mathrm{S3}} \), \(D_{L_1 }^\mathrm{F} \) and \(F_{L_1 }^\mathrm{F} \) could be solved by the following process.

From the boundary conditions (48) we can obtain

$$\begin{aligned} \begin{array}{l} \left\{ {{\begin{array}{l} {A_{L_1 }^{\mathrm{S2}} } \\ {C_{L_1 }^{\mathrm{S2}} } \\ {A_{L_1 }^{\mathrm{S3}} } \\ {C_{L}^{\mathrm{S3}} } \\ \end{array} }} \right\} =-\left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S2}} \left( R \right) }&{} {T_{12,\;L_1 }^{\mathrm{S2}} \left( R \right) } \\ {T_{21,\;L_1 }^{\mathrm{S2}} \left( R \right) }&{} {T_{22,\;L_1 }^{\mathrm{S2}} \left( R \right) } \\ {T_{12,\;L_1 }^{\mathrm{S2}} \left( r \right) }&{} {T_{12,\;L_1 }^{\mathrm{S2}} \left( r \right) } \\ {T_{21,\;L_1 }^{\mathrm{S2}} \left( r \right) }&{} {T_{22,\;L_1 }^{\mathrm{S2}} \left( r \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S3}} \left( R \right) }&{} {T_{12,\;L_1 }^{\mathrm{S3}} \left( R \right) } \\ {T_{21,\;L_1 }^{\mathrm{S3}} \left( R \right) }&{} {T_{22,\;L_1 }^{\mathrm{S3}} \left( R \right) } \\ {T_{11,\;L_1 }^{\mathrm{S3}} \left( r \right) }&{} {T_{12,\;L_1 }^{\mathrm{S3}} \left( r \right) } \\ {T_{21,\;L_1 }^{\mathrm{S3}} \left( r \right) }&{} {T_{22,\;L_1 }^{\mathrm{S3}} \left( r \right) } \\ \end{array} }} \\ \end{array} }} \right] ^{-1} \\ \left( {\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{21,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{11,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ {T_{21,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ \end{array} }} \right] \left\{ {{\begin{array}{l} {A_{L_1 }^{\mathrm{S}1} } \\ {C_{L_1 }^{\mathrm{S}1} } \\ \end{array} }} \right\} +\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{21,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{11,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( r \right) } \\ {T_{21,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( r \right) } \\ \end{array} }} \right] \left\{ {{\begin{array}{l} {A^\mathrm{I} } \\ {C^\mathrm{I} } \\ \end{array} }} \right\} } \right) \\ \end{array} \end{aligned}$$
(74)

and the amplitudes \(A_{L_1 }^{\mathrm{S2}} \), \(C_{L_1 }^{\mathrm{S2}} \), \(A_{L_1 }^{\mathrm{S3}} \) and \(C_{L_1 }^{\mathrm{S3}} \) can be expressed in the form

$$\begin{aligned} \left\{ {{\begin{array}{l} {A_{L_2 }^{\mathrm{S2}} } \\ {C_{L_2 }^{\mathrm{S}2} } \\ {A_{L_2 }^{\mathrm{S3}} } \\ {C_{L_2 }^{\mathrm{S3}} } \\ \end{array} }} \right\} =\mathop {\sum }\limits _{L_1 } {\mathbf{F}_1 \left\{ {{\begin{array}{l} {A_{L_1 }^{\mathrm{S2}} } \\ {C_{L_1 }^{\mathrm{S}2} } \\ {A_{L_1 }^{\mathrm{S3}} } \\ {C_{L_1 }^{\mathrm{S3}} } \\ \end{array} }} \right\} } \end{aligned}$$
(75)

where the matrix

$$\begin{aligned} \mathbf{F}_1 =\left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {F_1 \left( {L_1 ,L_2 ,\alpha _1 } \right) }&{} &{} &{} \\ &{} {F_1 \left( {L_1 ,L_2 ,\beta _1 } \right) }&{} &{} \\ &{} &{} {F_1 \left( {L_1 ,L_2 ,\alpha _1 } \right) }&{} \\ &{} &{} &{} {F_1 \left( {L_1 ,L_2 ,\beta _1 } \right) } \\ \end{array} }} \right] \end{aligned}$$
(76)

Substitution of Eqs. (75) and (74) into Eq. (50) leads to

$$\begin{aligned} \begin{array}{l} \left( {\mathop {\sum }\limits _{L_{_1 } } {\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {T_{12,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {T_{21,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {T_{22,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {U_{11,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {U_{12,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {U_{21,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {U_{22,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ \end{array} }} \right] \mathbf{F}_2 } -\mathop {\sum }\limits _{L_1 } {\mathbf{M}_{L_1 } } \left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{12,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{11,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( r \right) } \\ {T_{12,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( r \right) } \\ \end{array} }} \right] } \right) \left\{ {{\begin{array}{l} {A^\mathrm{I} } \\ {C^\mathrm{I} } \\ \end{array} }} \right\} \\ +\left( {\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } &{} {T_{12,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ {T_{21,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } &{} {T_{22,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ {U_{11,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } &{} {U_{12,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ {U_{21,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } &{} {U_{22,\;L_1 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ \end{array} }} \right] -\mathop {\sum }\limits _{L_2 } {\mathop {\sum }\limits _{L_1 } {\mathbf{M}_{L} } } \left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{12,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{11,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ {T_{12,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ \end{array} }} \right] \mathbf{F}_1 } \right) \left\{ {{\begin{array}{l} {A_{L_2 }^{\mathrm{S}1} } \\ {C_{L_2 }^{\mathrm{S}1} } \\ \end{array} }} \right\} \\ =\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } &{} {T_{12,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } \\ {T_{21,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } &{} {T_{22,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } \\ {U_{11,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } &{} {U_{12,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } \\ {U_{21,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } &{} {U_{22,\;L_1 }^\mathrm{F} \left( {r_0 } \right) } \\ \end{array} }} \right] \left\{ {{\begin{array}{l} {D_{L_2 }^\mathrm{F} } \\ {F_{L_2 }^\mathrm{F} } \\ \end{array} }} \right\} \\ \end{array} \end{aligned}$$
(77)

where the matrix

$$\begin{aligned} \mathbf{M}_{L_1 }= & {} \left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } &{} {T_{12,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } \\ {T_{21,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } &{} {T_{22,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } \\ {U_{11,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } &{} {U_{12,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } \\ {U_{21,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } &{} {U_{22,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } &{} {T_{12,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ {T_{21,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } &{} {T_{22,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ {U_{11,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } &{} {U_{12,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ {U_{21,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } &{} {U_{22,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ \end{array} }} \\ \end{array} }} \right] \nonumber \\&\quad \mathbf{F}_1 \left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^{\mathrm{S2}} \left( R \right) }&{} {T_{12,\;L_2 }^{\mathrm{S2}} \left( R \right) } \\ {T_{21,\;L_2 }^{\mathrm{S2}} \left( R \right) }&{} {T_{22,\;L_2 }^{\mathrm{S2}} \left( R \right) } \\ {T_{11,\;L_2 }^{\mathrm{S2}} \left( r \right) }&{} {T_{12,\;L_2 }^{\mathrm{S2}} \left( r \right) } \\ {T_{21,\;L_2 }^{\mathrm{S2}} \left( r \right) }&{} {T_{22,\;L_2 }^{\mathrm{S2}} \left( r \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^{\mathrm{S3}} \left( R \right) }&{} {T_{12,\;L_2 }^{\mathrm{S3}} \left( R \right) } \\ {T_{21,\;L_2 }^{\mathrm{S3}} \left( R \right) }&{} {T_{22,\;L_2 }^{\mathrm{S3}} \left( R \right) } \\ {T_{11,\;L_2 }^{\mathrm{S3}} \left( r \right) }&{} {T_{12,\;L_2 }^{\mathrm{S3}} \left( r \right) } \\ {T_{21,\;L_2 }^{\mathrm{S3}} \left( r \right) }&{} {T_{22,\;L_2 }^{\mathrm{S3}} \left( r \right) } \\ \end{array} }} \\ \end{array} }} \right] ^{-1} \end{aligned}$$
(78)

and the matrices

$$\begin{aligned} \mathbf{F}_2 =\hbox {i}^{l_1 }\bar{{Y}}_{l_1 m_1 } \left( {\theta _0 ,\varphi _0 } \right) \left[ {{\begin{array}{l@{\quad }l} {F_2 \left( {L_1 ,L_2 ,\alpha _1 } \right) }&{} \\ &{} {F_2 \left( {L_1 ,L_2 ,\beta _1 } \right) } \\ \end{array} }} \right] \end{aligned}$$
(79)

Let

$$\begin{aligned} \left[ {{\begin{array}{l@{\quad }l} {\tilde{T}_{11}^\mathrm{S} \left( R \right) }&{} {\tilde{T}_{12}^\mathrm{S} \left( R \right) } \\ {\tilde{T}_{21}^\mathrm{S} \left( R \right) }&{} {\tilde{T}_{22}^\mathrm{S} \left( R \right) } \\ {\tilde{T}_{31}^\mathrm{S} \left( r \right) }&{} {\tilde{T}_{32}^\mathrm{S} \left( r \right) } \\ {\tilde{T}_{41}^\mathrm{S} \left( r \right) }&{} {\tilde{T}_{42}^\mathrm{S} \left( r \right) } \\ \end{array} }} \right] =\mathop {\sum }\limits _{L_1 } {\mathbf{M}_{L_1 } \left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{12,\;L_1 }^{\mathrm{S}1} \left( R \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{11,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{12,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ {T_{12,\;L_1 }^{\mathrm{S}1} \left( r \right) }&{} {T_{22,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} 0&{} 0 \\ 0&{} 0 \\ 0&{} 0 \\ 0&{} 0 \\ \end{array} }} \\ \end{array} }} \right] \mathbf{F}_1 } \end{aligned}$$
(80)

Then for each expansion term k, n Eq. (77) can be rewritten as

$$\begin{aligned} \begin{array}{l} \mathop {\sum }\limits _{L_2 } {\left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {\delta _{l_2 k} \delta _{m_2 n} T_{11,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{11,\;L_2 }^\mathrm{S} \left( R \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} T_{12,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{12,\;L_2 }^\mathrm{S} \left( R \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} T_{21,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{12,\;L_2 }^\mathrm{S} \left( R \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} T_{22,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{22,\;L_2 }^\mathrm{S} \left( R \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} U_{11,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{13,\;L_2 }^\mathrm{S} \left( r \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} U_{12,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{23,\;L_2 }^\mathrm{S} \left( r \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} U_{21,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{14,\;L_2 }^\mathrm{S} \left( r \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} U_{22,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{24,\;L_2 }^\mathrm{S} \left( r \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} {-\delta _{l_2 k} \delta _{m_2 n} \Gamma _{11,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} T_{12,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} \Gamma _{21,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} T_{22,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} U_{11,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} U_{12,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} U_{21,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} U_{22,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ \end{array} }} \\ \end{array} }} \right] } \left\{ {{\begin{array}{l} {{\begin{array}{l} {A_{L_2 }^{\mathrm{S}1} } \\ {C_{L_2 }^{\mathrm{S}1} } \\ \end{array} }} \\ {{\begin{array}{l} {D_{L_2 }^\mathrm{F} } \\ {F_{L_2 }^\mathrm{F} } \\ \end{array} }} \\ \end{array} }} \right\} \\ \quad =\left\{ {{\begin{array}{l} {I_{11} \left( {k,n} \right) } \\ {I_{21} \left( {k,n} \right) } \\ {I_{31} \left( {k,n} \right) } \\ {I_{41} \left( {k,n} \right) } \\ \end{array} }} \right\} \\ \end{array} \end{aligned}$$
(81)

in which

$$\begin{aligned} \left\{ {{\begin{array}{l} {I_{11} \left( {k,n} \right) } \\ {I_{21} \left( {k,n} \right) } \\ {I_{31} \left( {k,n} \right) } \\ {I_{41} \left( {k,n} \right) } \\ \end{array} }} \right\} =\mathop {\sum }\limits _{L_1 } {\left( {\mathbf{M}_{L_1 } \left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{21,\;L_1 }^\mathrm{I} \left( R \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( R \right) } \\ {T_{11,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{12,\;L_1 }^\mathrm{I} \left( r \right) } \\ {T_{21,\;L_1 }^\mathrm{I} \left( r \right) }&{} {T_{22,\;L_1 }^\mathrm{I} \left( r \right) } \\ \end{array} }} \right] -\left[ {{\begin{array}{l@{\quad }l} {T_{11,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {T_{12,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {T_{21,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {T_{22,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {U_{11,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {U_{12,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ {U_{21,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } &{} {U_{22,\;L_2 }^\mathrm{I} \left( {r_0 } \right) } \\ \end{array} }} \right] \mathbf{F}_2 } \right) } \left\{ {{\begin{array}{l} {A_\mathrm{I} } \\ {C_\mathrm{I} } \\ \end{array} }} \right\} \end{aligned}$$

with the Kronecker \(\delta _{l_2 k} \) and \(\delta _{m_2 n} \).

Let the integer \(l_2 \) vary from 0 to N (if \(\mathop {\sum }\nolimits _{l_2 =0}^N {\mathop {\sum }\nolimits _{m_2 =-l_2 }^{l_2 } } \) is close enough to \(\mathop {\sum }\nolimits _{l_2 =0}^\infty {\mathop {\sum }\nolimits _{m_2 =-l_2 }^{l_2 } } \) depending on the accuracy), the number of unknown coefficients to be determined is \(4\left( {N+1} \right) ^{2}\). Thus, the system of equations for all unknown coefficients are obtained from Eq. (81) as

$$\begin{aligned} \left[ {{\begin{array}{l} {\tilde{\mathbf{F}}_{0,0} } \\ \vdots \\ {\tilde{\mathbf{F}}_{k,n} } \\ \vdots \\ {\tilde{\mathbf{F}}_{\left( {N+1} \right) ^{2},\left( {N+1} \right) ^{2}} } \\ \end{array} }} \right] \left\{ {{\begin{array}{l} {\mathbf{a}_{0,0} } \\ \vdots \\ {\mathbf{a}_{k,n} } \\ \vdots \\ {\mathbf{a}_{\left( {N+1} \right) ^{2},\left( {N+1} \right) ^{2}} } \\ \end{array} }} \right\} =\mathbf{0} \end{aligned}$$
(82)

where

$$\begin{aligned} {\tilde{\mathbf{F}}}_{k,n}= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l@{\quad }l} {{\varvec{\Omega }}_{0,0} }&{} \cdots &{} {{\varvec{\Omega }}_{k,{} n} }&{} \cdots &{} {{\varvec{\Omega }}_{\left( {N+1} \right) ^{2},\left( {N+1} \right) ^{2}} } \\ \end{array} }} \right] \end{aligned}$$
(83)
$$\begin{aligned} \mathbf{a}_{k,n}= & {} \left[ {{\begin{array}{l@{\quad }l@{\quad }l@{\quad }l} {A_{k,n}^{\mathrm{S}1} }&{} {C_{k,n}^{\mathrm{S}1} }&{} {D_{k,n}^\mathrm{F} }&{} {F_{k,n}^\mathrm{F} } \\ \end{array} }} \right] ^{T} \end{aligned}$$
(84)

in which

$$\begin{aligned} {\varvec{\Omega }}_{k,{} n} =\left[ {{\begin{array}{l@{\quad }l} {{\begin{array}{l@{\quad }l} {\delta _{l_2 k} \delta _{m_2 n} T_{11,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{11,\;\left( {k,n} \right) }^\mathrm{S} \left( R \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} T_{12,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{12,\;\left( {k,n} \right) }^\mathrm{S} \left( R \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} T_{21,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{12,\;\left( {k,n} \right) }^\mathrm{S} \left( R \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} T_{22,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{22,\;\left( {k,n} \right) }^\mathrm{S} \left( R \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} U_{11,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{13,\;\left( {k,n} \right) }^\mathrm{S} \left( r \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} U_{12,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{23,\;\left( {k,n} \right) }^\mathrm{S} \left( r \right) } \\ {\delta _{l_2 k} \delta _{m_2 n} U_{21,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{14,\;\left( {k,n} \right) }^\mathrm{S} \left( r \right) }&{} {\delta _{l_2 k} \delta _{m_2 n} U_{22,\;\left( {k,n} \right) }^{\mathrm{S1}} \left( {r_0 } \right) -\tilde{T}_{24,\;\left( {k,n} \right) }^\mathrm{S} \left( r \right) } \\ \end{array} }}&{} {{\begin{array}{l@{\quad }l} {-\delta _{l_2 k} \delta _{m_2 n} T_{11,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} T_{12,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} T_{21,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} T_{22,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} U_{11,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} U_{12,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } \\ {-\delta _{l_2 k} \delta _{m_2 n} U_{21,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } &{} {-\delta _{l_2 k} \delta _{m_2 n} U_{22,\;\left( {k,n} \right) }^\mathrm{F} \left( {r_0 } \right) } \\ \end{array} }} \\ \end{array} }} \right] \end{aligned}$$

From Eq. (82), it can be seen that all the coefficients \(A_{L_2 }^{\mathrm{S}1} \), \(C_{L_2 }^{\mathrm{S}1} \), \(A_{L_1 }^{\mathrm{S2}} \), \(C_{L_1 }^{\mathrm{S2}} \), \(A_{L_1 }^{\mathrm{S3}} \), \(C_{L_1 }^{\mathrm{S3}} \), \(D_{L_1 }^\mathrm{F} \) and \(F_{L_1 }^\mathrm{F} \) are determined for the given expansion term number N.

Similarly, from the boundary conditions (49) and (51), the coefficients \(B_{L_2 }^{\mathrm{S}1} \), \(B_{L_1 }^{\mathrm{S2}} \), \(B_{L_1 }^{\mathrm{S3}} \) and \(E_{L_2 }^{\mathrm{S}1}\) could be solved by the following process. The total equations are formed that

$$\begin{aligned} \begin{array}{l} \left( {\left\{ {{\begin{array}{l} {T_{31,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ {U_{31,\;L_2 }^{\mathrm{S1}} \left( {r_0 } \right) } \\ \end{array} }} \right\} -\mathop {\sum }\limits _{L_2 } {\mathop {\sum }\limits _{L_1 } {\left[ {{\begin{array}{l@{\quad }l} {T_{31,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) }&{} {T_{31,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ {U_{31,\;L_2 }^{\mathrm{S2}} \left( {r_0 } \right) }&{} {U_{31,\;L_2 }^{\mathrm{S3}} \left( {r_0 } \right) } \\ \end{array} }} \right] \mathbf{F}_1 \left[ {{\begin{array}{l@{\quad }l} {T_{51,\;L_1 }^{\mathrm{S2}} \left( R \right) }&{} {T_{51,\;L_1 }^{\mathrm{S3}} \left( R \right) } \\ {T_{51,\;L_1 }^{\mathrm{S2}} \left( r \right) }&{} {T_{51,\;L_1 }^{\mathrm{S3}} \left( r \right) } \\ \end{array} }} \right] ^{-1}\left\{ {{\begin{array}{l} {T_{51,\;L_1 }^{\mathrm{S}1} \left( R \right) } \\ {T_{51,\;L_1 }^{\mathrm{S}1} \left( r \right) } \\ \end{array} }} \right\} } } } \right) B_{L_2 }^{\mathrm{S}1} \\ \quad -\left\{ {{\begin{array}{l} {T_{31,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ {U_{31,\;L_2 }^\mathrm{F} \left( {r_0 } \right) } \\ \end{array} }} \right\} E_{L_2 }^\mathrm{F} =0 \\ \end{array} \end{aligned}$$
(85)

Also, it can be seen that Eq. (85) are tenable for any incident frequency and N, and this indicates that all the constants \(B_{{L}'}^{22} \), \(\tilde{B}_L^{11} \), and \(E_{{L}'}^{22} \) are equal to zero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, S., Shang, X. General three-dimensional scattering and dynamic stress concentration of Lamb-like waves in a spherical shell with a spherical inclusion. Arch Appl Mech 87, 1165–1198 (2017). https://doi.org/10.1007/s00419-017-1240-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-017-1240-2

Keywords

Navigation