Skip to main content
Log in

Mode shape degeneration in linear rotor dynamics for turbocharger systems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The modelling and simulation process of high-speed rotor dynamics is a rather essential task that should accompany the virtual prototype development of exhaust gas turbochargers. The system’s nonlinear nature originates primarily in the oil-film concentrated in the journal bearings, which relates to the associated gyroscopic forward and backward modes. This study focuses on linear rotor dynamics and the impact of the bearing stiffness variation on the shape alternation of gyroscopic modes, which cannot be observed in the typical critical speed maps or Campbell diagrams. The mode degeneration is investigated with the help of the modal assurance criterion according to two principles: first, quantify the shape alternation of the associated modes on the basis of the average bearing stiffness from literature, and second, compare the consecutive modes against each other, either forward or backward. The latter reveals that the aforementioned degeneration leads to a jump with respect to the mode shape into the next occurring mode although it is still being registered as a system whirl that belongs to the previous natural frequency. The investigation is extended over a wide range of turbocharger frame sizes demonstrating that both the mode degeneration and jump occur independently of the assembly dimensions, thus offering an alternative insight on the possible form of the occurring rotor-bearing oscillations arising from motor excitation, aero-loads or self-excited vibrations due to oil-whirl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Allemang, R.J.: Investigation of some multiple input/output frequency response function experimental modal analysis techniques. Ph.D. thesis, University of Cincinnati (1980)

  2. Allemang, R.J., Brown, D.L.: A correlation coefficient for modal vector analysis. In: International Modal Analysis Conference, pp. 110–116 (1982)

  3. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)

    MATH  Google Scholar 

  4. Butenschön, H.J.: Das hydrodynamische, zylindrische Gleitlager endlicher Breite unter instationärer Belastungen. Ph.D. thesis, TH Karlsruhe (1976)

  5. Chatzisavvas, I., Boyaci, A., Koutsovasilis, P., Schweizer, B.: Influence of the oil temperature of thrust bearings on the vibratory behavior of small turbochargers. In: International Conference on Engineering Vibration (2015)

  6. Chatzisavvas, I., Boyaci, A., Koutsovasilis, P., Schweizer, B.: Influence of hydrodynamic thrust bearings on the nonlinear oscillations of high-speed rotors. J. Sound Vib. 380, 224 (2016)

    Article  Google Scholar 

  7. Chatzisavvas, I., Boyaci, A., Lehn, A., Mahner, M., Koutsovasilis, P., Schweizer, B.: On the influence of thrust bearings on the nonlinear rotor vibrations of turbochargers. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (2016)

  8. Chen, W.J., Gunter, E.J.: Introduction to Dynamics of Rotor-Bearing Systems. Trafford Publishing, Victoria (2005)

    Google Scholar 

  9. Childs, D.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Wiley, New York (1993)

    Google Scholar 

  10. Driot, N., Lamarque, C.-H., Berlioz, A.: Theoretical and experimental analysis of a base-excited rotor. J. Comput. Nonlinear Dyn. 1(3), 257 (2006)

    Article  Google Scholar 

  11. Duchemin, M., Berlioz, A., Ferraris, G.: Dynamic behavior and stability of a rotor under base excitation. J. Vib. Acoust. 128(5), 576–585 (2006)

    Article  Google Scholar 

  12. Friswell, M.I., Garvey, S.D., Penny, J.E.T.: Computing critical speeds for rotating machines with speed-dependent bearing properties. J. Sound Vib. 169, 139–158 (1998b)

    Article  Google Scholar 

  13. Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of rotating machines. http://www.rotordynamics.info/ (2010)

  14. Friswell, M.I., Penny, J.E.T., Garvey, S.D., Lees, A.W.: Dynamics of Rotating Machines. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  15. Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik, 2nd edn. Springer, Berlin (2001)

    Google Scholar 

  16. Gugau, M., Winkler, F., Weiske, S., Heuer, T., Sauerstein, R.: The next generation of pulse optimized multi-scroll turbines for automotive applications: dualVolute and TwinScroll. In: 12th International Conference on Turbochargers and Turbocharging (2016)

  17. Hahn, K.: Dynamik-simulation von Wälzlagerkäfigen. Ph.D. thesis, Technische Universität Kaiserslautern (2004)

  18. Kim, H.S.: Stability analysis of a turbine rotor system with alford forces. J. Sound Vib. 258(4), 777–790 (2002)

    Article  Google Scholar 

  19. Koutsovasilis, P., Driot, N., Daixing, L., Schweizer, B.: Quantification of sub-synchronous vibrations for turbocharger rotors with full-floating ring bearings. Arch. Appl. Mech. 85(4), 481–502 (2015)

    Article  Google Scholar 

  20. Nguyen-Schäfer, H.: Rotordynamics of Automotive Turbochargers: Linear and Nonlinear Rotordynamics–Bearing Design–Rotor Balancing. Springer, Berlin (2012)

    Book  Google Scholar 

  21. Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  22. Schweizer, B.: Total instability of turbocharger rotors-physical explanation of the dynamic failure of rotors with full-floating ring bearings. J. Sound Vib. 328, 156–190 (2009)

    Article  Google Scholar 

  23. Schweizer, B.: Vibrations and bifurcations of turbocharger rotors. In: SIRM 2009: 8th International Conference on Vibrations in Rotating Machines (2009)

  24. Schweizer, B.: Dynamics and stability of automotive turbochargers. Arch. Appl. Mech. 80(9), 1017–1043 (2010)

    Article  Google Scholar 

  25. Schweizer, B., Sievert, M.: Nonlinear oscillations of automotive turbocharger turbines. J. Sound Vib. 321, 955975 (2009)

    Article  Google Scholar 

  26. Singh, R., Lim, T.C.: Vibration transmission through rolling element bearings in geared rotor systems. NASA Contractor Report 90-C-019, Ohio State University, Columbus, Ohio (1990)

  27. Spearot, J.A.: High-Temperature, High-Shear (HTHS) Oil Viscosity: Measurement and Relationship to Engine Operation: ASTM Special Technical Publication, vol. 1068. ASTM International, West Conshohocken (1989)

    Book  Google Scholar 

  28. Szeri, A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  29. Teutsch, R.: Kontaktmodelle und Strategien zur Simulation von Wälzlagern und Wälzführungen. Ph.D. thesis, Technische Universität Kaiserslautern (2004)

  30. Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)

    Google Scholar 

  31. Wensing, J.A.: On the Dynamics of Ball Bearings. Ph.D. thesis, University of Twente, Enschede, The Netherlands (1998)

  32. Yoon, S.Y., Lin, Z., Allaire, P.E.: Control of Surge in Centrifugal Compressors by Active Magnetic Bearings. Springer, London (2013)

    Book  Google Scholar 

  33. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method, 6th edn. Elsevier Butterworth-Heinemann, Oxford (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Koutsovasilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsovasilis, P. Mode shape degeneration in linear rotor dynamics for turbocharger systems. Arch Appl Mech 87, 575–592 (2017). https://doi.org/10.1007/s00419-016-1210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1210-0

Keywords

Navigation