Skip to main content
Log in

A review on studies of the aerodynamics of different types of maneuvers in dragonflies

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the recent decades, biomimetic robots have attracted scientific communities’ attention increasingly, as people try to learn from nature in which exist astonishing and uniquely evolved mechanisms shown by very species. Dragonfly, as such one example, demonstrates unique and superior flight performance than most of the other insect species and birds. Researchers are obsessed with the aerodynamic characteristics of an in-flight dragonfly as two pairs of independently controlled wings provide them with an unmatchable flying performance and robustness. In this paper, an extensive review of recent studies related to the flight aerodynamics of dragonflies has been conducted. The main research findings about effect of the motion parameters and body attitude on the resulting aerodynamic forces and power requirements in different flight modes of a dragonfly are summarized. Particular attention is given to functional characteristics of dragonfly wings and the importance of mutual interaction between forewing and hindwing for its flyability. This article aims to bring together current understandings of dragonfly aerodynamics and thus has certain reference value to design and control of dragonfly-inspired biomimetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46

Similar content being viewed by others

References

  1. Ellington, C.P.: The novel aerodynamics of insect flight: applications to micro-air vehicles. J. Exp. Biol 202, 3439–3448 (1999)

    Google Scholar 

  2. Obata, A., Shinohara, S., Akimoto, K., Suzuki, K., Seki, M.: Aerodynamic bio-mimetics of gliding dragonflies for ultra-light flying robot. Robotics 3, 163–180 (2014)

    Article  Google Scholar 

  3. Couceiro, M.S., Fonseca Ferreira, N.M., Tenreiro Machado, J.A.: Analysis and control of a dragonfly-inspired robot. In: International Symposium on Computational Intelligence for Engineering Systems, Porto, pp. 18–19 (2009)

  4. Couceiro, M.S., Fonseca Ferreira, N.M., Tenreiro Machado, J.A.: Hybrid adaptive control of a dragonfly model. Commun. Nonlinear Sci. Numer. Simul. 17, 893–903 (2012)

    Article  MathSciNet  Google Scholar 

  5. Hu, Z., Deng, X.Y.: A flight strategy for intelligent aerial vehicles learned from dragonfly. In: Lam, T.M. (ed.) Aerial Vehicles, pp. 189–202. InTech, Rijeka (2009)

  6. Gaissert, N., Mugrauer, R., Mugrauer, G., Jebens, A., Jebens, K., Knubben, E.M.: Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight. In: Natraj, A., Cameron, S., Melhuish, C., Witkowski, M. (eds.) Towards Autonomous Robotic Systems, pp. 90–100. Springer, Berlin (2014)

  7. Azuma, A., Azuma, S., Watanabe, I., Furuta, T.: Flight mechanics of a dragonfly. J. Exp. Biol. 116, 79–107 (1985)

    Google Scholar 

  8. Azuma, A., Watanabe, T.: Flight performance of a dragonfly. J. Exp. Biol. 137, 221–252 (1988)

    Google Scholar 

  9. May, M.L.: Dragonfly flight: power requirement at high speed and acceleration. J. Exp. Biol. 158, 325–342 (1991)

    Google Scholar 

  10. Wakeling, J.M., Ellington, C.P.: Dragonfly flight. I. Gliding flight and steady-state aerodynamic forces. J. Exp. Biol. 200, 543–556 (1997)

    Google Scholar 

  11. Wakeling, J.M., Ellington, C.P.: Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. J. Exp. Biol. 200, 557–582 (1997)

    Google Scholar 

  12. Wakeling, J.M., Ellington, C.P.: Dragonfly flight. III. Lift and power requirements. J. Exp. Biol. 200, 583–600 (1997)

    Google Scholar 

  13. Alexander, D.E.: Wind tunnel studies of turns by flying dragonflies. J. Exp. Biol. 122, 81–98 (1986)

    Google Scholar 

  14. Alexander, D.E.: Unusual phase relationships between the forewings and hindwings in flying dragonflies. J. Exp. Biol. 109, 379–383 (1984)

    Google Scholar 

  15. Alexander, D.E.: Studies on flight control and aerodynamics in dragonflies. 1982, PhD Dissertation, Duke University

  16. Freymuth, P.: Thrust generation by an airfoil in hover modes. Exp. Fluids 9, 17–24 (1990)

    Article  Google Scholar 

  17. Chadwick, L.E.: The wing motion of the dragonfly. Bull. Brooklyn Ent. So. 35, 109–112 (1940)

    Google Scholar 

  18. Neville, A.C.: Aspects of flight mechanics in anisopterous dragonflies. J. Exp. Biol. 37, 631–656 (1960)

    Google Scholar 

  19. Newman, B.G., Savage, S.B., Schouella, D.: Model tests on a wing section of an Aeschna dragonfly. In: Pendley, T.J. (ed.) Scale Effects in Animal Locomotion, pp. 445–477. Academic Press, New York (1977)

  20. Norberg, R.A.: Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. In: Wu, Y.T., Brokaw, C.J., Brennen, C. (eds.) Swimming and Flying in Nature, vol. 2, pp. 763–781. Plenum Press, New York (1975)

  21. Russell, D.B.: Numerical and experimental investigations into the aerodynamics of dragonfly flight. Cornell University, New York Thesis (Ph.D.), (August, 2004)

  22. Wang, Z.J., Russell, D.B.: Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Theoret. Appl. Mech. 148101, 1–4 (2007)

    Google Scholar 

  23. Thomas, A.L., Taylor, G.K., Srygley, R.B., Nudds, R.L., Bomphrey, R.J.: Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299–4323 (2004)

    Article  Google Scholar 

  24. Wang, Z.J.: Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323–341 (2000)

    Article  MATH  Google Scholar 

  25. Wang, Z.J.: Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 85, 2035–2038 (2000)

    Article  Google Scholar 

  26. Wang, Z.J., Birch, J.M., Dickinson, M.H.: Unsteady forces and flows in low Reynolds number hovering flight: two dimensional computations vs robotic wing experiments. J. Exp. Biol. 207, 449–460 (2004)

    Article  Google Scholar 

  27. Wu, J.H., Sun, M.: Unsteady aerodynamic forces of a flapping wing. J. Exp. Biol. 207, 1137–1150 (2004)

    Article  Google Scholar 

  28. Sun, M., Hamdani, H.: A study on the mechanism of high-lift generation by an airfoil in unsteady motion at low Reynolds number. Acta Mech. Sin. 17, 97–114 (2001)

    Article  Google Scholar 

  29. Mou, X.L., Sun, M.: Effects of wing planform on aerodynamic force production of stroking model insect wing. J. Beijing Univ. Aeronaut. Astronaut. 37, 1359–1364 (2011)

    Google Scholar 

  30. Lan, S., Sun, M.: Aerodynamic properties of a wing performing unsteady rotational motion at low Reynolds number. Acta Mech. 149, 145–147 (2001)

    Article  MATH  Google Scholar 

  31. Lan, S., Sun, M.: Aerodynamic force and flow structures of two airfoils in flapping motions. Acta Mech. Sin. 17, 310–331 (2001)

    Article  MathSciNet  Google Scholar 

  32. Lehmann, F.O.: Wing–wake interaction reduces power consumption in insect tandem wings. Exp. Fluids 46, 765–775 (2009)

    Article  Google Scholar 

  33. Gustafson, K., Leben, R.: Computation of dragonfly aerodynamics. Comput. Phys. Commun. 65, 121–132 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Resh, V.H., Cardé, R.T.: Encyclopedia of Insects. Academic Press, San Diego (2009)

    Google Scholar 

  35. Berman, G., Wang, Z.J.: Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lu, Y., Shen, G.X., Lai, G.J.: Dual leading-edge vortices on flapping wings. J. Exp. Biol. 209, 5005–5016 (2006)

    Article  Google Scholar 

  37. Premachandran, S., Giacobello, M.: The effect of wing corrugations on the aerodynamic performance of low-Reynolds number flapping flight. In: \(17^{\rm th}\) Australasian Fluid Mechanics Conference. Auckland, New Zealand. 5–9 December, 2010

  38. Sudhakar, Y., Vengadesan, S.: Flight force production by flapping insect wings in inclined stroke plane kinematics. Comput. Fluids. 39, 683–695 (2010)

    Article  MATH  Google Scholar 

  39. Wang, Z.J.: Dissecting insect flight. Ann. Rev. Fluid Mech. 37, 183–210 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Zeng, L.J., Liu, H., Yin, C.Y.: Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. J. Exp. Biol. 206, 745–757 (2003)

    Article  Google Scholar 

  41. Lai, G.J., Shen, G.X.: Experimental investigation on the wing–wake interaction at the mid stroke in hovering flight of dragonfly. Sci. China Phys. Mech. Astron. 55, 2167–2178 (2012)

    Article  Google Scholar 

  42. Wang, J.K., Sun, M.: A computational study of the aerodynamics and forewing–hindwing interaction of a model dragonfly in forward flight. J. Exp. Biol. 208, 3785–3804 (2005)

    Article  Google Scholar 

  43. Sane, S.P.: The aerodynamics of insect flight. J. Exp. Biol. 206, 4191–4208 (2003)

    Article  Google Scholar 

  44. Shyy, W., Trizila, P., Kang, C., Aono, H.: Can tip vortices enhance lift of a flapping wing? Aerosp. Lett. 47, 289–293 (2009)

    Google Scholar 

  45. Hefler, C., Qiu, H., Shyy, W.: The interaction of wings in different flight modes of a dragonfly. \(17^{\rm th}\) International Symposium on Application of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (07–10 July, 2014)

  46. Alexander, D.E.: Unusual phase relationships between the forewings and hindwings in flying dragonflies. J. Exp. Biol. 109, 379–383 (1984)

    Google Scholar 

  47. Newman, B.G., Savage, S.B., Schouella, D.: Model test on a wing section of an Aeschna dragonfly. In: Pedley, T.J. (ed.) Scale Effects in Animal Locomotion, pp. 445–477. Academic Press, London (1977)

    Google Scholar 

  48. Biewener, A.B.: Animal Locomotion. Oxford University Press, Oxford (2003)

    Google Scholar 

  49. Hankin, E.H.: The soaring flight of dragonflies. Proc. Camb. Philos. Soc. 20, 460–465 (1921)

    Google Scholar 

  50. Polcyn, D.M.: The thermal biology of desert dragonflies. University of California, USA. Thesis (Ph.D.) (1988)

  51. Corbet, P.S.: A Biology of Dragonflies. Classey, Farringdon (1983)

    Google Scholar 

  52. May, M.L.: Dependence of flight behavior and heat production on air temperature in the green darner dragonfly, Anax junius (Odonata: Aeshnidae). J. Exp. Biol. 198, 2385–2392 (1995)

    Google Scholar 

  53. Zhang, J., Lu, X.Y.: Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Phys. Rev. E 80, 017302 (2009)

    Article  Google Scholar 

  54. Xiao, T.H.: A numerical method for unsteady low Reynolds number flows and application to Micro Air Vehicles. Nanjing University of Aeronautics and Astronautics, China, Thesis (Ph.D.) (April, 2009) (in Chinese)

  55. Xiao, T.H., Ang, H.S.: Numerical study of unusual phase relationships and aerodynamic interaction between forewing and hindwing of dragonfly model. Acta Aeronaut. ET Astronaut. Sin. 30, 1165–1175 (2009). (in Chinese)

    Google Scholar 

  56. Maybury, W.J., Lehmann, F.O.: The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J. Exp. Biol. 207, 4707–4726 (2004)

    Article  Google Scholar 

  57. DiLeo, C., Deng, X.Y.: Design and experiments of a dragonfly-inspired robot. Adv. Robot. 23, 1003–1021 (2009)

    Article  Google Scholar 

  58. Guo, T.: Design and prototype of a hovering ornithopter based on dragonfly flight. Massachusetts Institute of Technology, USA. Bachelor’s Thesis. (June, 2007)

  59. Hu, Z., Deng, X.Y.: Aerodynamic effect of forewing–hindwing interactions in hovering and forward flight of dragonfly. In: Proceeding of the Annual Meeting of the Society for Integrative and Comparative Biology (SICB’09), Boston, USA (January, 2009)

  60. Naidu, V., Young, J., Lai, J.C.S.: Effect of wing flexibility on dragonfly hover flight. In: \(19{\rm th}\) Australasian Fluid Mechanics Conference, Melbourne, Australia (December, 2014)

  61. Hu, Z., McCauley, R., Schaeffer, S., Deng, X.: Aerodynamics of dragonfly flight and robotic design. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan (May, 2009)

  62. Ellington, C.P., Vandenberg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  63. Xie, C.M., Huang, W.X.: Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoret. Appl. Mech. Lett. 5, 24–29 (2015)

    Article  Google Scholar 

  64. Hu, Z., Deng, X.Y.: Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mech. Sin. 30, 787–799 (2014)

    Article  Google Scholar 

  65. Sun, M., Lan, S.L.: A computational study of the aerodynamic forces and power requirements of dragonfly Aeschna juncea hovering. J. Exp. Biol. 207, 1887–1901 (2004)

    Article  Google Scholar 

  66. Sun, M., Tang, J.: Lift and power requirements of hovering flight in Drosophila virilis. J. Exp. Biol. 205, 2413–2427 (2002)

    Google Scholar 

  67. Dokkum, P.V.: Dragonflies: Magnificent Creatures of Water, Air and Land. Yale University Press, New Haven (2015)

    Google Scholar 

  68. Berger, C.: Dragonflies. Stackpole Books, Mechanicsburg (2004)

    Google Scholar 

  69. Xu, J.L., Zhao, C.X., Zhang, Y.L., Zhang, Y.: Effect of flapping trajectories on the dragonfly aerodynamics. Chin. Sci. Bull. 51, 777–784 (2006)

    Google Scholar 

  70. Jongerius, S.R., Lentink, D.: Structural analysis of a dragonfly wing. Exp. Mech. 50, 1323–1334 (2010)

    Article  Google Scholar 

  71. Chen, Y.H., Skote, M., Zhao, Y., Huang, W.M.: Stiffness evaluation of the leading edge of the dragonfly wing via laser vibrometer. Mater. Lett. 97, 166–168 (2013)

    Article  Google Scholar 

  72. Xu, M., Yu, Y.L., Bao, L.: Theoretical modeling study on the aerodynamic effects of dragonfly flexible wing in forward flapping flight. J. Grad. Sch. Chin. Acad. Sci. 23, 729–735 (2006). (in Chinese)

    Google Scholar 

  73. Meng, L.B., Ang, H.S., Xiao, T.H.: Analysis of aerodynamic characteristics of flexible wing of dragonfly based on CFD/CSD method. J. Aerosp. Power 29, 2063–2069 (2014). (in Chinese)

    Google Scholar 

  74. Nakata, T., Liu, H.: Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proce. R. Soc. B 279, 722–731 (2011)

    Article  Google Scholar 

  75. Vargas, A., Mittal, R., Dong, H.B.: A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspir. Biomim. 3, 026004 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China Grant (Nos. 50836006, 11202123 and 51376096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diangui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Gong, X. & Huang, D. A review on studies of the aerodynamics of different types of maneuvers in dragonflies. Arch Appl Mech 87, 521–554 (2017). https://doi.org/10.1007/s00419-016-1208-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1208-7

Keywords

Navigation