Skip to main content
Log in

Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the results of a study concerning the band-gap behaviours and formation mechanisms of periodic track structures. Based on the band-gap theories introduced from phononic crystal which concentrates on the elastic wave propagation in periodic structures, the railway track can be regarded as a novel locally resonant phononic crystal. The band-gaps are found by using the transfer matrix method combined with Bloch theorem, and the attenuation factors in band-gaps are also obtained firstly. Then, band-gap behaviours of periodic track structures are investigated with various parameters such as stiffness of rail pad, fastening spacing and thermal force in rail. Bounding frequencies and width of band-gaps are closely related to the parameters of track structures, resulting from the various wave motion modes at the bounding frequencies. Moreover, it has been found that Bragg band-gaps and locally resonance band-gaps coexist in periodic track structures. And formation mechanisms of band-gaps in periodic track structures can be explained by the Bragg scattering mechanism and locally resonance mechanism. The theoretical analysis is verified by the frequency response functions calculated through the finite element models at last.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158(2), 377–382 (1992)

    Article  Google Scholar 

  2. Cremer, L., Heckl, M., Petersson, B.A.T.: Structure-Borne Sound. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  3. Mead, D.M.: Wave propagation in continuous periodic structures: research contributions from Southampton, 1964–1995. J. Sound Vib. 190(3), 495–524 (1996)

    Article  Google Scholar 

  4. Heckl, M.A.: Coupled waves on a periodically supported Timoshenko beam. J. Sound Vib. 252(5), 849–882 (2002)

    Article  MATH  Google Scholar 

  5. Gry, L., Gontier, C.: Dynamic modelling of railway track: a periodic model based on a generalized beam formulation. J. Sound Vib. 199(4), 531–558 (1997)

    Article  Google Scholar 

  6. Nordborg, A.: Vertical rail vibrations: pointforce excitation. Acta. Acust. United. Acust. 84(2), 280–288 (1998)

    Google Scholar 

  7. Wu, T.X., Thompson, D.J.: Application of a multiple-beam model for lateral vibration analysis of a discretely supported rail at high frequencies. J. Acoust. Soc. Am. 108(3 Pt 1), 1341–1344 (2000)

    Article  Google Scholar 

  8. Thompson, D.: Railway noise and vibration: mechanisms, modelling and means of control. Elsevier Sci. Technol. 153(4), 21–25 (2008)

    Google Scholar 

  9. Sheng, X., Jones, C.J.C., Thompson, D.J.: Responses of infinite periodic structures to moving or stationary harmonic loads. J. Sound Vib. 282(1–2), 125–149 (2005)

    Article  Google Scholar 

  10. Sheng, X., Li, M.H.: Propagation constants of railway tracks as a periodic structure. J. Sound Vib. 299(4–5), 1114–1123 (2007)

    Article  Google Scholar 

  11. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993)

    Article  Google Scholar 

  12. Sánchezdehesa, J., Garciachocano, V.M., Torrent, D., Cervera, F., Cabrera, S., Simon, F.: Noise control by sonic crystal barriers made of recycled materials. J. Acoust. Soc. Am. 129(3), 1173–1183 (2011)

    Article  Google Scholar 

  13. Yan, P., Vasseur, J.O., Djafari-Rouhani, B., Dobrzyński, L., Deymier, P.A.: Two-dimensional phononic crystals: examples and applications. Surf. Sci. Rep. 65(8), 229–291 (2010)

    Article  Google Scholar 

  14. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  15. Wang, G., Wen, X., Wen, J., Shao, L., Liu, Y.: Two-dimensional locally resonant phononic crystals with binary structures. Phys. Rev. Lett. 93(15), 9587–9602 (2004)

    Google Scholar 

  16. Craster, R.V., Pichugin, A.V.: High-frequency homogenization for periodic media. Proc. R. Soc. A 466(2120), 2341–2362 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, D., Wen, J., Zhao, H., Liu, Y., Wen, X.: Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J. Sound Vib. 318(1–2), 193–205 (2008)

    Article  Google Scholar 

  18. Romerogarcía, V., Sánchezpérez, J.V., Garciaraffi, L.M.: Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. J. Appl. Phys. 110(1), 014904–014904-9 (2011)

    Article  Google Scholar 

  19. Ho, K.M., Cheng, C.K., Yang, Z., Zhang, X.X., Sheng, P.: Broadband locally resonant sonic shields. Appl. Phys. Lett. 83(26), 5566–5568 (2003)

    Article  Google Scholar 

  20. Luo, Y.: A model for predicting the effect of temperature force of continuous welded rail track. Proc. Inst. Mech. Eng. F J. Rail 213(2), 117–124 (1999)

    Article  Google Scholar 

  21. Oudich, M., Li, Y., Assouar, B.M., Hou, Z.: A sonic band gap based on the locally resonant phononic plates with stubs. New. J. Phys. 12(8), 201–206 (2010)

    Article  Google Scholar 

  22. Xiao, Y., Wen, J., Wen, X.: Longitudinal wave band gaps in metamaterial-based elastic rods containing multi-degree-of-freedom resonators. New. J. Phys. 14(3), 33042–33061 (2012)

    Article  Google Scholar 

  23. Huang, L., Wen, X., Xiao, Y., Wen, J.: Analysis and experimental realization of locally resonant phononic plates carrying a periodic array of beam-like resonators. J. Phys. D Appl. Phys. 47(47), 45307–45318 (2014)

    Google Scholar 

  24. Mead, D.J.: Wave propagation and natural modes in periodic systems: II. Multi-coupled systems, with and without damping. J. Sound Vib. 40(1), 19–39 (1975)

    Article  MATH  Google Scholar 

  25. Gang, W., Li-Hui, S., Yao-Zong, L., Ji-Hong, W.: Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chin. Phys. 15(8), 1843–1848 (2006)

    Article  Google Scholar 

  26. Wen, Q.H.: Locally resonant elastic wave band gaps in flexural vibration of multi-oscillators beam. Acta Phys. Sin. 61(3), 355–367 (2012)

    Google Scholar 

  27. Chen, M., Meng, D., Zhang, H., Jiang, H., Wang, Y.: Resonance-coupling effect on broad band gap formation in locally resonant sonic metamaterials. Wave Motion 63, 111–119 (2016)

    Article  Google Scholar 

  28. Kaplunov, J., Nolde, E., Prikazchikov, D.A.: A revisit to the moving load problem using an asymptotic model for the Rayleigh wave. Wave Motion 47(7), 440–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Thanks are owed to the NSFC (National Natural Science Foundation of China, No. U1234201) for the research grant awarded to the first author. The work described in this paper was supported by the National Natural Science Foundation of China (51008018), the Fundamental Research Funds for the Central Universities of China (2682015CX079) and the Natural Science Foundation of Sichuan Province (2014GZ0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyou Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yi, Q., Zhao, C. et al. Wave propagation in periodic track structures: band-gap behaviours and formation mechanisms. Arch Appl Mech 87, 503–519 (2017). https://doi.org/10.1007/s00419-016-1207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1207-8

Keywords

Navigation