Skip to main content
Log in

Comprehensive notch shape factors for V-notched Brazilian disk specimens loaded under mixed mode I/II from pure opening mode to pure closing mode

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Stress distribution is analyzed around the tip of V-notches in a disk-type test sample, called V-notched Brazilian disk (V-BD), under in-plane mixed mode loading conditions. The notch stress intensity factors (NSIFs) which are basic parameters in brittle fracture assessment of V-notched components are computed for the V-BD specimen by using the finite element (FE) method for different notch geometries and a wide range of mode mixities from pure positive mode I to pure mode II loading and from pure mode II to pure negative mode I loading conditions. Then, in order to make use of the NSIFs more conveniently in practical applications, the NSIFs are converted to the dimensionless parameters, called the notch shape factors (NSFs). These parameters are useful to compute more rapidly and conveniently the NSIFs in the V-BD specimen for various notch angles and different notch tip radii. The obtained results are partially validated by means of some results reported in the open literature and also by numerical analysis of stress distribution around the V-notch. Very good agreements are shown to exist between the stress distributions obtained from the computed NSIFs and those directly resulted from the FE analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

\(\rho \) :

Notch tip radius

\(2\alpha \) :

Notch angle

V-BD:

V-notched Brazilian disk

\(\beta \) :

Loading angle for V-BD specimen

\(\beta _{{\mathrm{I}\mathrm{I}}}\) :

Loading angle corresponding to pure mode II loading

\(\sigma _{{\theta \theta }}\) :

Tangential stress

\(\sigma _{{rr}}\) :

Radial stress

\(\sigma _{{r}\theta }\) :

In-plane shear stress

\(\lambda _{{i}}\) :

Eigenvalues

\(\mu _{{i}}\) :

Eigenvalues (real parameters)

\(K_\mathrm{I}^{{\mathrm{V},\rho }}\) :

Notch stress intensity factor (NSIF)-mode I

\(K_{\mathrm{{II}}}^{{\mathrm{V},\rho }}\) :

Notch stress intensity factor (NSIF)-mode II

\(Y_\mathrm{I}^{{\mathrm{V},\rho }}\) :

Notch shape factor (NSF)-mode I

\(Y_{\mathrm{{II}}}^{{\mathrm{V},\rho }}\) :

Notch shape factor (NSF)-mode II

References

  1. Lazzarin, P., Zambardi, R.: A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112, 275–298 (2001)

    Article  Google Scholar 

  2. Ovcharenko, Y.N.: Local strain energy density near sharp V-notches in plates. J. Appl. Mech. Tech. Phys. 54, 1003–1010 (2013)

    Article  MATH  Google Scholar 

  3. Ayatollahi, M.R., Berto, F., Lazzarin, P.: Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite. Carbon 49, 2465–2474 (2011)

    Article  Google Scholar 

  4. Sih, G., Ho, J.: Sharp notch fracture strength characterized by critical energy density. Theor. Appl. Fract. Mech. 16, 179–214 (1991)

    Article  Google Scholar 

  5. Ellyin, F., Kujawski, D.: Generalization of notch analysis and its extension to cyclic loading. Eng. Fract. Mech. 32, 819–826 (1989)

    Article  Google Scholar 

  6. Glinka, G.: Energy density approach to calculation of inelastic strain–stress near notches and cracks. Eng. Fract. Mech. 22, 485–508 (1985)

    Article  Google Scholar 

  7. Lazzarin, P., Berto, F., Radaj, D.: Fatigue-relevant stress field parameters of welded lap joints: pointed slit tip compared with keyhole notch. Fatigue Fract. Eng. Mater. Struct. 32, 713–735 (2009)

    Article  Google Scholar 

  8. Torabi, A.R., Amininejad, S.H.: Brittle fracture in V-notches with end holes. Int. J. Damage Mech. 24, 529–545 (2015)

    Article  Google Scholar 

  9. Torabi, A.R., Ayatollahi, M.R.: On determination of bifurcation angle in V-notched Brazilian disc specimen under mixed mode loading. In: ICMFF9. pp. 577–583. Parma (2013)

  10. Ayatollahi, M.R., Torabi, A.R.: Investigation of mixed mode brittle fracture in rounded-tip V-notched components. Eng. Fract. Mech. 77, 3087–3104 (2010)

    Article  Google Scholar 

  11. Ayatollahi, M.R., Torabi, A.R.: A criterion for brittle fracture in U-notched components under mixed mode loading. Eng. Fract. Mech. 76, 1883–1896 (2009)

    Article  Google Scholar 

  12. Strandberg, M.: Fracture at V-notches with contained plasticity. Eng. Fract. Mech. 69, 403–415 (2002)

    Article  Google Scholar 

  13. Gómez, F.J.F., Elices, M.: A fracture criterion for blunted V-notched samples. Int. J. Fract. 127, 239–264 (2004)

    Article  MATH  Google Scholar 

  14. Ayatollahi, M.R., Torabi, A.R.: Brittle fracture in rounded-tip V-shaped notches. Mater. Des. 31, 60–67 (2010)

    Article  Google Scholar 

  15. Ayatollahi, M.R., Torabi, A.R.: Determination of mode II fracture toughness for U-shaped notches using Brazilian disc specimen. Int. J. Solids Struct. 47, 454–465 (2010)

    Article  MATH  Google Scholar 

  16. Kullmer, G., Richard, H.A.: Influence of the root radius of crack-like notches on the fracture load of brittle components. Arch. Appl. Mech. 76, 711–723 (2006)

    Article  MATH  Google Scholar 

  17. Seweryn, A.: Brittle fracture criterion for structures with sharp notches. Eng. Fract. Mech. 47, 673–681 (1994)

    Article  Google Scholar 

  18. Seweryn, A., Łukaszewicz, A.: Verification of brittle fracture criteria for elements with V-shaped notches. Eng. Fract. Mech. 69, 1487–1510 (2002)

    Article  Google Scholar 

  19. Yosibash, Z., Priel, E., Leguillon, D.: A failure criterion for brittle elastic materials under mixed-mode loading. Int. J. Fract. 141, 291–312 (2006)

    Article  MATH  Google Scholar 

  20. Ayatollahi, M.R., Dehghany, M., Kaveh, Z.: Computation of V-notch shape factors in four-point bend specimen for fracture tests on brittle materials. Arch. Appl. Mech. 83, 345–356 (2012)

    Article  MATH  Google Scholar 

  21. Ayatollahi, M.R., Aliha, M.R.M.: On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng. Fract. Mech. 75, 4631–4641 (2008)

    Article  Google Scholar 

  22. Ayatollahi, M.R., Torabi, A.R.: Failure assessment of notched polycrystalline graphite under tensile-shear loading. Mater. Sci. Eng. A 528, 5685–5695 (2011)

    Article  Google Scholar 

  23. Ayatollahi, M.R., Torabi, A.R.: Experimental verification of RV-MTS model for fracture in soda-lime glass weakened by a V-notch. J. Mech. Sci. Technol. 25, 2529–2534 (2011)

    Article  Google Scholar 

  24. Torabi, A.R., Taherkhani, M.: Extensive data of notch shape factors for V-notched Brazilian disc specimen under mixed mode loading. Mater. Sci. Eng. A 528, 8599–8609 (2011)

    Article  Google Scholar 

  25. Ayatollahi, M.R., Nejati, M.: Experimental evaluation of stress field around the sharp notches using photoelasticity. Mater. Des. 32, 561–569 (2011)

    Article  Google Scholar 

  26. Williams, M.L.M.: Stress singularities resulting from various boundary conditions. J. Appl. Mech. 19(4), 526–528 (1952)

    Google Scholar 

  27. Filippi, S., Lazzarin, P., Tovo, R.: Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates. Int. J. Solids Struct. 39, 4543–4565 (2002)

    Article  MATH  Google Scholar 

  28. Lazzarin, P., Tovo, R.: A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches. Int. J. Fract. 78, 3–19 (1996)

    Article  Google Scholar 

  29. Lazzarin, P., Filippi, S.: A generalized stress intensity factor to be applied to rounded V-shaped notches. Int. J. Solids Struct. 43, 2461–2478 (2006)

    Article  MATH  Google Scholar 

  30. Ayatollahi, M.R., Torabi, A.R., Azizi, P.: Experimental and theoretical assessment of brittle fracture in engineering components containing a sharp V-notch. Exp. Mech. 51, 919–932 (2011)

    Article  Google Scholar 

  31. Awaji, H., Sato, S.: Combined mode fracture toughness measurement by the disk test. J. Eng. Mater. Technol. 100, 175–182 (1978)

    Article  Google Scholar 

  32. Ayatollahi, M.R., Torabi, A.R., Bahrami, B.: On the necessity of using critical distance model in mixed mode brittle fracture prediction of V-notched Brazilian disk specimens under negative mode I conditions. Theor. Appl. Fract. Mech. 84, 38–48 (2016)

  33. Berto, F., Ayatollahi, M.R.: Fracture assessment of Brazilian disc specimens weakened by blunt V-notches under mixed mode loading by means of local energy. Mater. Des. 32, 2858–2869 (2011)

    Article  Google Scholar 

  34. Ayatollahi, M.R., Torabi, A.R.: Tensile fracture in notched polycrystalline graphite specimens. Carbon 48, 2255–2265 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Ayatollahi.

Appendices

Appendix 1

  1. (a)

    Functions used in the stress field for blunt V-shaped notches (mode I and mode II) [27]:

    $$\begin{aligned} \begin{array}{l} \left\{ {{\begin{array}{c} {m_{\theta \theta } (\theta )} \\ {m_{rr} (\theta )} \\ {m_{r\theta } (\theta )} \\ \end{array} }} \right\} ^{(\mathrm{I})}=\frac{1}{[1+\lambda _1 +\chi _{b_1 } (1-\lambda _1 )]}\left[ {\left\{ {{\begin{array}{c} {(1+\lambda _1 )\cos (1-\lambda _1 )\theta } \\ {(3-\lambda _1 )\cos (1-\lambda _1 )\theta } \\ {(1-\lambda _1 )\sin (1-\lambda _1 )\theta } \\ \end{array} }} \right\} +\chi _{b_1 } (1-\lambda _1 )\left\{ {{\begin{array}{c} {\cos (1+\lambda _1 )\theta } \\ {-\cos (1+\lambda _1 )\theta } \\ {\sin (1+\lambda _1 )\theta } \\ \end{array} }} \right\} } \right] \\ \left\{ {{\begin{array}{c} {n_{\theta \theta } (\theta )} \\ {n_{rr} (\theta )} \\ {n_{r\theta } (\theta )} \\ \end{array} }} \right\} ^{(\mathrm{I})}=\frac{1}{4(q-1)[1+\lambda _1 +\chi _{b_1 } (1-\lambda _1 )]}\left[ {\chi _{d_1 } \left\{ {{\begin{array}{c} {(1+\mu _1 )\cos (1-\mu _1 )\theta } \\ {(3-\mu _1 )\cos (1-\mu _1 )\theta } \\ {(1-\mu _1 )\sin (1-\mu _1 )\theta } \\ \end{array} }} \right\} +\chi _{c_1 } \left\{ {{\begin{array}{c} {\cos (1+\mu _1 )\theta } \\ {-\cos (1+\mu _1 )\theta } \\ {\sin (1+\mu _1 )\theta } \\ \end{array} }} \right\} } \right] \\ \left\{ {{\begin{array}{c} {m_{\theta \theta } (\theta )} \\ {m_{rr} (\theta )} \\ {m_{r\theta } (\theta )} \\ \end{array} }} \right\} ^{(\mathrm{{II}})}=\frac{1}{[1-\lambda _2 +\chi _{b_2 } (1+\lambda _2 )]}\left[ {\left\{ {{\begin{array}{c} {(1+\lambda _2 )\sin (1-\lambda _2 )\theta } \\ {(3-\lambda _2 )\sin (1-\lambda _2 )\theta } \\ {(1-\lambda _2 )\cos (1-\lambda _2 )\theta } \\ \end{array} }} \right\} +\chi _{b_2 } (1+\lambda _2 )\left\{ {{\begin{array}{c} {\sin (1+\lambda _2 )\theta } \\ {-\sin (1+\lambda _2 )\theta } \\ {\cos (1+\lambda _2 )\theta } \\ \end{array} }} \right\} } \right] \\ \left\{ {{\begin{array}{c} {n_{\theta \theta } (\theta )} \\ {n_{rr} (\theta )} \\ {n_{r\theta } (\theta )} \\ \end{array} }} \right\} ^{(\mathrm{{II}})}=\frac{1}{4(\mu _2 -1)[1-\lambda _2 +\chi _{b_2 } (1+\lambda _2 )]}\left[ {\chi _{d_2 } \left\{ {{\begin{array}{c} {(1+\mu _2 )\sin (1-\mu _2 )\theta } \\ {(3-\mu _2 )\sin (1-\mu _2 )\theta } \\ {(1-\mu _2 )\cos (1-\mu _2 )\theta } \\ \end{array} }} \right\} +\chi _{c_2 } \left\{ {{\begin{array}{c} {-\sin (1+\mu _2 )\theta } \\ {\sin (1+\mu _2 )\theta } \\ {-\cos (1+\mu _2 )\theta } \\ \end{array} }} \right\} } \right] \\ \end{array} \end{aligned}$$
  2. (b)

    The values of the parameters \(\lambda _i, \mu _i, \chi _{{b_i}}, \chi _{{c_i}}, \chi _{{d_i}}\) for different notch angles [27]:

\(2\alpha \) (\(^\circ \))

\(\lambda _1\)

\(\mu _1\)

\(\chi _{{b_1}}\)

\(\chi _{{c_1}}\)

\(\chi _{{d_1}}\)

0

0.5

\(-\)0.5

1

4

0

30

0.5014

\(-\)0.4561

1.0707

3.7907

0.0632

45

0.505

\(-\)0.4319

1.1656

3.5721

0.0828

60

0.5122

0.4057

1.3123

3.2832

0.096

90

0.5448

0.3449

1.8414

2.5057

0.1046

120

0.6157

\(-\)0.2678

3.0027

1.515

0.0871

145

0.6736

\(-\)0.2198

4.153

0.9933

0.0673

150

0.752

\(-\)0.1624

6.3617

0.5137

0.0413

\(2\alpha \) (\(^\circ \))

\(\lambda _2 \)

\(\mu _2 \)

\(\chi _{{b_2}}\)

\(\chi _{{c_2}}\)

\(\chi _{{d_2}}\)

0

0.5

\(-\)0.5

1

\(-\)12

0

30

0.5982

\(-\)0.4465

0.9212

\(-\)11.3503

\(-\)0.3506

45

0.6597

\(-\)0.4118

0.814

\(-\)10.1876

\(-\)0.451

60

0.7309

0.3731

0.6584

\(-\)8.3946

\(-\)0.4788

90

0.9085

0.2882

0.2189

\(-\)2.9382

\(-\)0.2436

120

1.1489

\(-\)0.198

\(-\)0.3139

4.5604

0.5133

145

1.3021

\(-\)0.1514

\(-\)0.5695

8.7371

1.1362

150

1.4858

\(-\)0.1034

\(-\)0.7869

12.9161

1.9376

  1. (c)

    The expressions for the parameters \(\omega _1\) and \(\omega _2\) [27]:

    $$\begin{aligned} \omega _1= & {} \frac{q}{4(q-1)}\left[ \frac{\chi _{{d_1}} (1+\mu _1 )+\chi _{{c_1}} }{1+\lambda _1 +\chi _{{b_1}} (1-\lambda _1)}\right] \\ \omega _2= & {} \frac{q}{4(\mu _2 -1)}\left[ \frac{\chi _{{d_2}} (1+\mu _2 )+\chi _{{c_2}}}{1+\lambda _2 +\chi _{{b_2}} (1-\lambda _2)}\right] \end{aligned}$$

\(2\alpha \) (\(^\circ \))

q

0

2.00

30

1.83

45

1.75

60

1.67

90

1.50

120

1.33

145

1.19

150

1.17

180

1.00

Appendix 2

See Figs. 6, 7, 8 and 9.

Fig. 6
figure 6

Variations of the mode I and mode II notch shape factors versus the loading angle for RNL  =  0.4 and different values of RNR and \(2\alpha \)

Fig. 7
figure 7

Variations of the mode I and mode II notch shape factors versus the loading angle for RNL  =  0.3 and different values of RNR and \(2\alpha \)

Fig. 8
figure 8

Variations of the mode I and mode II notch shape factors versus the loading angle for RNL  =  0.2 and different values of RNR and \(2\alpha \)

Fig. 9
figure 9

Variations of the mode I and mode II notch shape factors versus the loading angle for RNL  =  0.1 and different values of RNR and \(2\alpha \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayatollahi, M.R., Torabi, A.R. & Bahrami, B. Comprehensive notch shape factors for V-notched Brazilian disk specimens loaded under mixed mode I/II from pure opening mode to pure closing mode. Arch Appl Mech 87, 299–313 (2017). https://doi.org/10.1007/s00419-016-1194-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1194-9

Keywords

Navigation