Skip to main content

Advertisement

Log in

The influence of lifting behavior on energy efficiency in rectilinear locomotion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In rectilinear locomotion, snakes propel themselves by extending or contracting parts of the body. It is interesting that some large snakes will lift the activated part of the body during rectilinear motion. We hypothesize that snakes use this unique strategy named “lifting behavior" to improve the performance of rectilinear motion on a rough horizontal surface. The purpose of this paper is to examine our hypothesis by examining whether rectilinear motion benefits from lifting behavior. In this study, we derive equations to estimate the energy consumption of rectilinear motion on a simplified 4-link snake robot model. We consider not only mechanical energy dissipation but also heat energy loss during motion. A criterion of minimum energy loss is used as a candidate for the strategy to show how much lifting behavior improves energy efficiency. Our analysis provides a framework for theoretical analysis of the energy cost of rectilinear locomotion for snakes, which can help biologists to further understand the behaviors of snakes. This study also provides some new insights into rectilinear locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander, R., Jayes, A., Ker, R.: Estimates of energy cost for quadrupedal running gaits. J. Zool. 190(2), 155–192 (1980)

    Article  Google Scholar 

  2. Arroyo, M., Heltai, L., Millán, D., DeSimone, A.: Reverse engineering the euglenoid movement. Proc. Natl. Acad. Sci. 109(44), 17874–17879 (2012)

    Article  Google Scholar 

  3. Benham, P.P., Crawford, R.J., Armstrong, C.G.: Mechanics of Engineering Materials. Longman Harlow, Essex (1996)

    Google Scholar 

  4. Bogert, C.M.: Rectilinear locomotion in snakes. Copeia 4, 253–254 (1947)

  5. Chernous’ ko, F.: The optimum rectilinear motion of a two-mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002)

    Article  MathSciNet  Google Scholar 

  6. Chernousko, F.: Analysis and optimization of the rectilinear motion of a two-body system. J. Appl. Math. Mech. 75(5), 493–500 (2011)

    Article  MathSciNet  Google Scholar 

  7. Childress, S., Hosoi, A., Schultz, W.W., Wang, Z.J.: Natural Locomotion in Fluids and on Surfaces. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  8. Cogger, H.G., Cameron, E., Sadlier, R., Eggler, P.: The action plan for Australian reptiles. Australian Nature Conservation Agency, Canberra (1993)

    Google Scholar 

  9. Curtin, N., Woledge, R.: Efficiency of energy conversion during shortening of muscle fibres from the dogfish scyliorhinus canicula. J. Exp. Biol. 158(1), 343–353 (1991)

    Google Scholar 

  10. DeSimone, A., Guarnieri, F., Noselli, G., Tatone, A.: Crawlers in viscous environments: linear vs non-linear rheology. Int. J. Non-linear Mech. 56, 142–147 (2013)

    Article  Google Scholar 

  11. DeSimone, A., Tatone, A.: Crawling motility through the analysis of model locomotors: two case studies. Eur. Phys. J. E 35(9), 1–8 (2012)

    Article  Google Scholar 

  12. DeSimone, A., Teresi, L.: Elastic energies for nematic elastomers. Eur. Phys. J. E 29(2), 191–204 (2009)

    Article  Google Scholar 

  13. Erkmen, I., Erkmen, A.M., Matsuno, F., Chatterjee, R., Kamegawa, T.: Snake robots to the rescue!. IEEE Robot. Autom. Mag. 9(3), 17–25 (2002)

    Article  Google Scholar 

  14. Figurina, T.Y.: Optimal motion control for a system of two bodies on a straight line. J. Comput. Syst. Sci. Int. 46(2), 227–233 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(2), 101–120 (1946)

    Google Scholar 

  16. Hatze, H., Buys, J.: Energy-optimal controls in the mammalian neuromuscular system. Biol. Cybern. 27(1), 9–20 (1977)

    Article  MATH  Google Scholar 

  17. Hu, D.L., Nirody, J., Scott, T., Shelley, M.J.: The mechanics of slithering locomotion. Proc. Natl. Acad. Sci. 106(25), 10081–10085 (2009)

    Article  Google Scholar 

  18. Kassim, I., Phee, L., Ng, W.S., Gong, F., Dario, P., Mosse, C., et al.: Locomotion techniques for robotic colonoscopy. IEEE Eng. Med. Biol. Mag. 25(3), 49–56 (2006)

    Article  Google Scholar 

  19. Lissmann, H.: Rectilinear locomotion in a snake (Boa occidentalis). J. Exp. Biol. 26(4), 368–379 (1950)

    Google Scholar 

  20. Marvi, H., Bridges, J., Hu, D.L.: Snakes mimic earthworms: propulsion using rectilinear travelling waves. J. R. Soc. Interface 10(84), 20130, 188 (2013)

    Article  Google Scholar 

  21. Marvi, H., Hu, D.L.: Friction enhancement in concertina locomotion of snakes. J. R. Soc. Interface 9(76), 3067–3080 (2012)

    Article  Google Scholar 

  22. Mosauer, W.: On the locomotion of snakes. Science 76(1982), 583–585 (1932)

    Article  Google Scholar 

  23. Nanua, P., Waldron, K.: Energy comparison between trot, bound, and gallop using a simple model. J. Biomech. Eng. 117(4), 466–473 (1995)

    Article  Google Scholar 

  24. Nishii, J.: An analytical estimation of the energy cost for legged locomotion. J. Theor. Biol. 238(3), 636–645 (2006)

    Article  MathSciNet  Google Scholar 

  25. Noselli, G., Tatone, A., DeSimone, A.: Discrete one-dimensional crawlers on viscous substrates: achievable net displacements and their energy cost. Mech. Res. Commun. 58, 73–81 (2014)

    Article  Google Scholar 

  26. Qiao, J., Shang, J., Goldenberg, A.: Development of inchworm in-pipe robot based on self-locking mechanism. IEEE/ASME Trans. Mechatron. 18(2), 799–806 (2013)

    Article  Google Scholar 

  27. Secor, S.M., Jayne, B.C., Bennett, A.F.: Locomotor performance and energetic cost of sidewinding by the snake Crotalus cerastes. J. Exp. Biol. 163(1), 1–14 (1992)

    Article  Google Scholar 

  28. Tanaka, Y., Ito, K., Nakagaki, T., Kobayashi, R.: Mechanics of peristaltic locomotion and role of anchoring. J. R. Soc. Interface 9(67), 222–233 (2012)

    Article  Google Scholar 

  29. Zhou, X., Majidi, C., O’Reilly, O.M.: Energy efficiency in friction-based locomotion mechanisms for soft and hard robots: slower can be faster. Nonlinear Dyn. 78(4), 2811–2821 (2014)

    Article  Google Scholar 

  30. Zimmermann, K., Zeidis, I.: Worm-like locomotion as a problem of nonlinear dynamics. J. Theor. Appl. Mech. 45(1), 179–187 (2007)

    Google Scholar 

  31. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Terrestrial Locomotion: With a Focus on Non-pedal Motion Systems. Springer, Berlin (2009)

    MATH  Google Scholar 

Download references

Acknowledgements

This work were supported by the National Natural Science Foundation of China (No. 61233010), and the Shanghai Municipal Science & Technology Commission Project (No. 14DZ1110900, 15XD1501800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Xie, S., Li, H. et al. The influence of lifting behavior on energy efficiency in rectilinear locomotion. Arch Appl Mech 87, 1–13 (2017). https://doi.org/10.1007/s00419-016-1167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1167-z

Keywords

Navigation