Skip to main content
Log in

Dynamic Saint-Venant principle for rotor system with undetectable initial crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper dedicates on the analysis of the initially cracked rotor system and the ratiocination on the reason why the initial crack is undetectable via signal processing method using dynamic Saint-Venant principle (DSVP). A numerical simulation is intensively conducted to justify the theoretical analysis. The conclusion has been obtained that the dynamic resultant of the initial crack force equals to zero in one period and the stress wave excited by the initial crack force will not interfere the lubrication of the supporting bearings when the frequency of the initial crack force preserves to be less than the limited frequency. This conclusion indicates that the undetectable initially cracked rotor system satisfies the criterions of DSVP, and the health monitoring method using ultrasonic wave should be adopted for initial crack diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sanderson, A.F.P.: The Vibration Behaviour of a Large Steam Turbine Generator During Crack Propagation Through the Generator Rotor. Institution of Mechanical Engineers Conference on Vibrations in Rotating Machinery. Bath, UK (1992)

    Google Scholar 

  2. Ishida, Y.: Cracked rotors: industrial machine case histories and nonlinear effects shown by simple Jeffcott rotor. Mech. Syst. Signal Process. 22, 805–817 (2008)

    Article  Google Scholar 

  3. Li, Y., Yang, B., Shi, Z., Song, Y., Han, H., Guo, H.: Accidents cases and reasons analysis of turbine rotors. Turbine Technol. 49, 66–69 (2007). (in Chinese)

    Google Scholar 

  4. Song, G., Chen, S., Song, J., Zhang, Y.: Cause analysis of rotor cracks in turbine-generator units. J. Chin. Soc. Power Eng. 32(320), 289–295 (2012). (in Chinese)

    Google Scholar 

  5. Nilsson, L.: On the vibration behaviour of a cracked rotor. In: IFToMM International Conference on Rotordynamic Problems in Power Plants, Rome, Italy, pp. 515–524 (1982)

  6. Müller, P., Bajkowski, J., Söffker, D.: Chaotic motions and fault detection in a cracked rotor. Nonlinear Dyn. 5, 233–254 (1994)

    Google Scholar 

  7. Patel, T.H., Darpe, A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound Vib. 311, 953–972 (2008)

    Article  Google Scholar 

  8. Sinou, J.-J., Lees, A.: A non-linear study of a cracked rotor. Eur. J. Mech. A Solids 26, 152–170 (2007)

    Article  MATH  Google Scholar 

  9. Leng, X., Meng, G., Zhang, T., Fang, T.: Bifurcation and chaos response of a cracked rotor with random disturbance. J Sound Vib. 299, 621–632 (2007)

    Article  Google Scholar 

  10. Jing, J., Meng, G.: A novel method for multi-fault diagnosis of rotor system. Mech. Mach. Theory. 44, 697–709 (2009)

    Article  MATH  Google Scholar 

  11. Gao, Q., Duan, C., Fan, H., Meng, Q.: Rotating machine fault diagnosis using empirical mode decomposition. Mech. Syst. Signal Process. 22, 1072–1081 (2008)

    Article  Google Scholar 

  12. Li, M., Li, F., Jing, B., Bai, H., Li, H., Meng, G.: Multi-fault diagnosis of rotor system based on differential-based empirical mode decomposition. J. Vib. Control. 21, 1821–1837 (2015)

    Article  Google Scholar 

  13. Han, S.W., Lee, H.C., Kim, Y.Y.: Noncontact damage detection of a rotating shaft using the magnetostrictive effect. J. Nondestruct. Eval. 22, 141–150 (2003)

    Article  Google Scholar 

  14. Barshinger, J.N., Rose, J.L.: Guided wave propagation in an elastic hollow cylinder coated with a viscoelastic material. Ultrason. IEEE Trans. Ferroelectr. Freq. Control. 51, 1547–1556 (2004)

    Article  Google Scholar 

  15. Ditri, J.J.: Utilization of guided elastic waves for the characterization of circumferential cracks in hollow cylinders. J. Acoust. Soc. Am. 96, 3769–3775 (1994)

    Article  Google Scholar 

  16. de Saint-Venant, A.J.C.B.: Mémoire sur la flexion des prismes. J. Math. Pures Appl. 1, 89–189 (1856)

    Google Scholar 

  17. Boussinesq, J.: Application des Potentiels à l’étude de l’équilibre et du Mouvement des Solides Élastiques. Gauthier-Villars, Paris (1885)

    MATH  Google Scholar 

  18. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. University Press, Cambridge (1920)

    MATH  Google Scholar 

  19. Mises, R.: On Saint Venant’s principle. Bull Am Math Soc. 51, 555–562 (1945)

    Article  MATH  Google Scholar 

  20. Sternberg, E.: On Saint-Venant’s principle. Quart. Appl. Math. 11, 393–402 (1954)

    MathSciNet  MATH  Google Scholar 

  21. Toupin, R.A.: Saint-Venant’s principle. Arch. Ration. Mech. Anal. 18, 83–96 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhao, J.-z: Toupin–Berdichevskii Theorem can’t be considered as a mathematical expression of Saint-Venant’s principle. Appl. Math. Mech. 7, 971–974 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Knowles, J.K.: On Saint-Venant’s principle in the two-dimensional linear theory of elasticity. Arch. Ration. Mech. Anal. 21, 1–22 (1966)

    Article  MathSciNet  Google Scholar 

  24. Horgan, C.O., Knowles, J.K.: Recent developments concerning Saint-Venant’s principle. Adv. Appl. Mech. 23, 179–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Horgan, C.O.: Recent developments concerning Saint-Venant’s principle: an update. Appl. Mech. Rev. 42, 295 (1989)

    Article  MathSciNet  Google Scholar 

  26. Horgan, C.: Recent developments concerning Saint-Venant’s principle: a second update. Appl. Mech. Rev. 49, S101 (1996)

    Article  MathSciNet  Google Scholar 

  27. Boley, B.: Application of Saint-Venant’s principle in dynamical problems. J. Appl. Mech. 22, 204–206 (1955)

    MATH  Google Scholar 

  28. Boley, B.A.: On a dynamical Saint Venant principle. J. Appl. Mech. 27, 74 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  29. Torvik, P.J.: Reflection of wave trains in semic—infinite plates. J. Acoust. Soc. Am. 41, 346 (1967)

    Article  Google Scholar 

  30. Flavin, J., Knops, R.: Some spatial decay estimates in continuum dynamics. J. Elast. 17, 249–264 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chirită, S., Quintanilla, R.: On Saint-Venant’s principle in linear elastodynamics. J. Elast. 42, 201–215 (1996)

    Article  MATH  Google Scholar 

  32. Karp, B.: Dynamic equivalence, self-equilibrated excitation and Saint-Venant’s principle for an elastic strip. Int. J. Solids Struct. 46, 3068–3077 (2009)

    Article  MATH  Google Scholar 

  33. Karp, B., Dorogoy, A., Wang, Z.: Non-uniform impact excitation of a cylindrical bar. J. Sound Vib. 323, 757–771 (2009)

    Article  Google Scholar 

  34. Karp, B.: Dynamic version of Saint-Venant’s principle-historical account and recent results. Nonlinear Anal. 63, e931–e942 (2005)

    Article  MATH  Google Scholar 

  35. Karp, B., Durban, D.: Saint-Venant’s principle in dynamics of structures. Appl. Mech. Rev. 64, 020801 (2011)

    Article  Google Scholar 

  36. Karp, B., Durban, D.: Elastodynamic End Effects in Structural Mechanics. Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism, pp. 115–179. Springer, Berlin (2013)

  37. Bachschmid, N., Vania, A., Audebert, S.: A comparison of different methods for transverse crack modelling in rotor systems. In: Proceedings of ISROMAC-8 Conference, pp. 26–30 (2000)

  38. Bachschmid, N., Pennacchi, P., Vania, A.: Identification of multiple faults in rotor systems. J. Sound Vib. 254, 327–366 (2002)

    Article  Google Scholar 

  39. Grabowski, B.: The vibrational behavior of a turbine rotor containing a transverse crack. J. Mech. Design. 102, 140–146 (1980)

    Article  Google Scholar 

  40. Mayes, I., Davies, W.: Analysis of the response of a multi-rotor-bearing system containing a transverse crack in a rotor. J. Vib. Acoust. Stress Reliab. Design 106, 139–145 (1984)

    Article  Google Scholar 

  41. Papadopoulos, C., Dimarogonas, A.: Stability of cracked rotors in the coupled vibration mode. J. Vib. Acoust. 110, 356–359 (1988)

    Article  Google Scholar 

  42. Gasch, R.: A survey of the dynamic behaviour of a simple rotating shaft with a transverse crack. J. Sound Vib. 160, 313–332 (1993)

    Article  MATH  Google Scholar 

  43. Varney, P., Green, I.: Rotordynamic crack diagnosis: distinguishing crack depth and location. J. Eng. Gas Turbines Power 135, 112101 (2013)

    Article  Google Scholar 

  44. Sekhar, A.: Vibration characteristics of a cracked rotor with two open cracks. J. Sound Vib. 223, 497–512 (1999)

    Article  Google Scholar 

  45. Sawicki, J.T., Gyekenyesi, A.L., Baaklini, G.Y.: Analysis of transient response of cracked flexible rotor. In: Proceedings of SPIE, San Diego, USA, pp. 142–150 (2004)

  46. Li, M., Wang, Y., Li, F., Li, H., Meng, G.: Modelica-based object-orient modeling of rotor system with multi-faults. Chin. J. Mech. Eng. 26, 1169–1181 (2013)

    Article  Google Scholar 

  47. Rose, J.L., Nagy, P.B.: Ultrasonic waves in solid media. J. Acoust. Soc. Am. 107, 1807 (2000)

    Article  Google Scholar 

  48. Achenbach, J. D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

  49. Gazis, D.C.: Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. J. Acoust. Soc. Am. 31, 568 (1959)

    Article  MathSciNet  Google Scholar 

  50. Madenga, V., Zou, D., Zhang, C.: Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts. J. Appl. Geophys. 59, 79–87 (2006)

    Article  Google Scholar 

  51. Pochhammer, L.: Ueber die Fortpflanzungsgeschwindigkeiten kleiner Schwingungen in einem unbegrenzten isotropen Kreiscylinder. J. für die Reine Angewandte Math. 81, 324–336 (1876)

    MathSciNet  MATH  Google Scholar 

  52. Oh, S., Gadala, M.: Dynamic behavior analysis of cracked rotor. J. Sound Vib. 309, 210–245 (2008)

    Article  Google Scholar 

  53. Sabnavis, G., Kirk, R., Kasarda, M., Quinn, D.: Cracked shaft detection and diagnostics: a literature review. Shock Vib. Digest. 36, 287–296 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the supports received from the National Basic Research Program of China (973 Program, No. 2011CB706502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Bai, H., Wang, X. et al. Dynamic Saint-Venant principle for rotor system with undetectable initial crack. Arch Appl Mech 86, 1841–1851 (2016). https://doi.org/10.1007/s00419-016-1150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1150-8

Keywords

Navigation