Skip to main content
Log in

Topological design of compression structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Force density method together with topological mapping has been employed to perform the form-finding process of tension structures. Compression-only structures such as domes and vaults can be modelled if the former approach is modified. This modification consists of iteratively introducing the self-weight of the structure to be modelled until the equilibrium configuration is found. This method is similar to the hanging chain models employed by Antonio Gaudí when designing his structures. The approach allows rapidly changing the input parameters in order to get different equilibrium configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

A :

Adjacency matrix of the mesh. Dimension: \(n_\mathrm{{n}} \times n_\mathrm{{n}}\).

C :

Connectivity matrix. Dimension: \(n_\mathrm{{b}} \times n_\mathrm{{n}} \).

l :

Branch length.

nit:

Number of iteration in the iterative FDM.

nit\(_{\max } \) :

Maximum number of iteration for the iterative FDM.

\(n_\mathrm{{b}} \) :

Number of branches in the mesh.

\(n_\mathrm{{n}} \) :

Number of nodes in the mesh.

\(n_\mathrm{{nr}} \) :

Number of nodes per ring.

\(n_\mathrm{{r}} \) :

Number of rings in the mesh.

\(\mathbf{P}_x ,\mathbf{P}_y ,\mathbf{P}_z \) :

Vectors containing the values of nodal forces in \(x\,y\,z\) directions respectively.

\(\mathop {\mathbf{P}_z}\limits ^\Delta \) :

Vector containing the nodal forces in z direction corresponding to the weight of the mesh.

\(\mathop {P_{z_i } }\limits ^\Delta \) :

Each of the components of vector \(\mathop {\mathbf{P}_z }\limits ^\Delta \) that contains the summation of one-third of the weights of the triangles that contain the node i as a vertex.

Q :

Force density matrix. Diagonal matrix of dimension: \(n_\mathrm{{b}} \times n_\mathrm{{b}} \).

q :

Force density ratio.

\(\mathbf{q}_{\mathrm{{rad}}}\) :

Force density ratio vector for radial branches groups.

\(\mathbf{q}_\mathrm{{ring}} \) :

Force density ratio vector for ring branches groups

S :

Branch force.

u :

Difference vector of coordinates x for the extreme nodes in each branch of the mesh.

v :

Difference vector of coordinates y for the extreme nodes in each branch of the mesh.

x, y, z :

Vectors with the \(x\,y\,z\) coordinates of the nodes in the mesh, respectively.

\(\mathbf{x}_\mathrm{{f}} ,\mathbf{y}_\mathrm{{f}} ,\mathbf{z}_\mathrm{{f}}\) :

Vectors with the \(x\,y\,z\) coordinates of the fixed nodes in the mesh, respectively

\(\mathbf{x}^\mathrm{{nit}},\mathbf{y}^\mathrm{{nit}},\mathbf{z}^\mathrm{{nit}}\) :

Vectors with the \(x\,y\,z\) coordinates of nodes in the mesh computed in iteration nit in the iterative FDM, respectively

\(\Delta z^\mathrm{{nit}}\) :

Difference between the z coordinate of the nodes in the mesh computed in two successive iterations nit and nit\(-\)1.

\(\Delta z_{\max } \) :

Maximum allowable difference between the z coordinate of the nodes in the mesh computed in two successive iterations nit and nit\({-}\)1 (convergence criterion).

\(\gamma \) :

Adopted surface density used in the computation of the mesh’s self-weight.

References

  1. Huerta, S.: Structural design in the work of Gaudí. Archit. Sci. Rev. 49(4), 324–339 (2006)

    Article  Google Scholar 

  2. Gómez-Serrano, J.: Arcos catenarios. In: Giralt-Miracle, D. (ed.) Gaudí, la búsqueda de la forma: espacio, geometría, estructura y construcción, pp. 97–101. Lunwerg, Barcelona (2002)

    Google Scholar 

  3. Kilian, A.: Linking hanging chain models to fabrication. ACADIA 1-17. http://designexplorer.net/newscreens/cadenarytool/KilianACADIA.pdf. Accessed 28 May 2015 (2004)

  4. Bletzinger, K.-U., Wüchner, R., Daoud, R., Daoud, F., Camprubí, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194(30–33), 3438–3452 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barnes, M.R.: Form finding and analysis of tension structures by dynamic relaxation. Int. J. Space Struct. 14(2), 89–104 (1999)

    Article  Google Scholar 

  6. Linkwitz, K., Schek, H.J.: Einige Bemerkung von vorsgepannten Seilnetzkonstruktionen. Ingenieur-archv 40, 145–158 (1971)

    Article  Google Scholar 

  7. Linkwitz, K.: About formfinding of double-curved structure. Eng. Struct. 21, 709–718 (1999)

    Article  Google Scholar 

  8. Schek, H.J.: The force density method for form finding and computation of general networks. Comput. Methods Appl. Mech. Eng. 3, 115–134 (1974)

    Article  MathSciNet  Google Scholar 

  9. Greco, L., Cuomo, M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–1540 (2012)

    Article  Google Scholar 

  10. Koohestani, K.: Form-finding of tensegrity structures via genetic algorithm. Int. J. Solids Struct. 49(5), 739–747 (2012)

    Article  Google Scholar 

  11. Zhang, L.-Y., Zhao, H.-P., Feng, X.-Q.: Constructing large-scale tensegrity structures with bar-bar connection using prismatic elementary cells. Arch. Appl. Mech. 85(3), 383–394 (2014)

    Article  Google Scholar 

  12. Hernández-Montes, E., Jurado-Piña, R., Bayo, E.: Topological mapping for tension structures. J. Struct. Eng. ASCE 132(6), 970–977 (2006)

    Article  Google Scholar 

  13. Carbonell-Márquez J.F., Gil-Martín L.M., Hernández-Montes E., Jurado-Piña R.: GAUDI 1.0–Manual de Usuario. Godel Impresiones Digitales, Granada. (2012) http://www.ugr.es/~tep190/investigacion/gaudi.html. Accessed 30 May 2015

  14. Jurado-Piña, R., Gil-Martín, L.M., Hernández-Montes, E.: Topological mesh for shell structures. Appl. Math. Model. 33(2), 948–958 (2009)

    Article  MATH  Google Scholar 

  15. Computers and Structures Inc. (CSI): SAP2000: Integrated software for structural analysis and design. CSI, Berkeley, CA (2009)

  16. Eurocode 2: Design of Concrete Structures-Part 1–1: General Rules and Rules for Buildings. CEN, Belgium (2004)

Download references

Acknowledgments

The present work was partially financed by the Spanish Ministry of Education by means of PhD grant to the first author (FPU grant AP 2010-3707). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Carbonell-Márquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbonell-Márquez, J.F., Gil-Martín, L.M., Fernández-Ruíz, M.A. et al. Topological design of compression structures. Arch Appl Mech 86, 1495–1508 (2016). https://doi.org/10.1007/s00419-016-1131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1131-y

Keywords

Navigation