Skip to main content
Log in

A new concept of plane stress analysis of notched flat bar in axial tension

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study is motivated by a consistent set of numerical and experimental observations, conducted by the authors themselves and also reported in various papers on the Poisson’s ratio which is involved in the plane elasticity analysis. The set of field equations of the plane elasticity theory may be reduced to only three material constant free equations sufficient for determining the full-field individual components which meet the necessary plane stress conditions. Thus, the way is open for a direct determination of states of stress in plate-like structure elements of irregular shape that may be both simply and multiply connected. In order to show the efficiency of this new concept of plane stress analysis, a tensile strip with symmetrical U-shaped grooves is investigated. By verifying the accuracy and reliability of results obtained, a good agreement was found in comparison with those of the reference work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Michell, J.H.: On the direct determination of stress in an elastic solid, with applications to the theory of plates. Proc. Lond. Math. Soc. 31, 100–124 (1899)

    Article  MathSciNet  MATH  Google Scholar 

  2. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff Ltd, Groningen, Holland (1963)

    MATH  Google Scholar 

  3. Okumura, I.: The mathematical theory of thick and thin elastic rectangular disks in the states of plane stress and plane strain. Mem. Kitami Inst. Technol. 33, l9–19 (2002)

    Google Scholar 

  4. Lakes, R.S.: Design considerations for materials with negative Poisson’s ratios. J. Mech. Des. 4, 696–700 (1993)

    Article  Google Scholar 

  5. Chen, D.H., Nisitani, H.: Effect of Poisson’s ratio on elastic–plastic stress under plane deformation. Eng. Anal. Bound. Elem. 20, 17–24 (1997)

    Article  Google Scholar 

  6. Frocht, M.M.: Photoelasticity, vol. I. Wiley, New York (1941). Ch.9

    Google Scholar 

  7. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, 1st edn. Cambridge University Press, Cambridge (1892)

    MATH  Google Scholar 

  8. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  9. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw Hill, New York (1970)

    MATH  Google Scholar 

  10. Gurtin, M.: An Introduction to Continuum Mechanics. Academic Press, New York (1981)

    MATH  Google Scholar 

  11. Meleshko, V.V.: Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev. 56, 33–85 (2003)

    Article  Google Scholar 

  12. Ogbonna, N.: On systematic generation of biharmonic functions. Int. J. Pure Appl. Math. 1, 13–22 (2013)

    Google Scholar 

  13. Airy, G.B.: On the strains in the interior of beams. Proc. R. Soc. Lond. 12, 304–306 (1862)

    Article  Google Scholar 

  14. Fernández, M.S.B., Calderón, J.A., Díez, P.B., Segura, I.C.: Stress-separation techniques in photoelasticity: a review. J. Strain Anal. Eng. Des. 45, 1–17 (2010)

    Article  Google Scholar 

  15. Kuske, A.: Separation of principal stresses in photoelasticity by means of a computer. Strain 2, 43–49 (1979)

    Article  Google Scholar 

  16. Yoneyama, S., Arikawa, S., Kobayashi, Y.: Photoelastic determination of boundary condition for finite element analysis. Opt. Meas. Model. Metrol 5, 109–118 (2011)

    Google Scholar 

  17. Yuanbo, K.: Combining photoelasticity and BEM for stress analysis. Bound. Elem. Technol. VII, 543–553 (1992)

    Article  MathSciNet  Google Scholar 

  18. Gao, X.L., Rowlands, R.E.: Hybrid method for stress analysis of finite three-dimensional elastic components. Int. J. Solids Struct. 37, 2727–2751 (2000)

    Article  MATH  Google Scholar 

  19. Durelli, A.J., Ranganayakamma, B.: On the use of photoelasticity and some numerical methods. In: 31st Annual Technical Symposium (pp. 2-8), International Society for Optics and Photonics (1987)

  20. McKenney, A., Leslie, G., Anita, M.: A fast Poisson solver for complex geometries. J. Comput. Phys. 2, 348–355 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gibou, F., Ronald, F.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 2, 577–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mayo, A.: Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM J. Sci. Stat. Comput. 1, 144–157 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jing, L.: A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 3, 283–353 (2003)

    Article  Google Scholar 

  24. Mattiussi, C.: The finite volume, finite element, and finite difference methods as numerical methods for physical field problems. Adv. Imaging Electron Phys. 113, 1–146 (2000)

    Article  Google Scholar 

  25. Peiró, J., Sherwin, S.: Finite difference, finite element and finite volume methods for partial differential equations. In: Handbook of Materials Modeling (pp. 2415–2446). Springer Netherlands (2005)

  26. Patil, P.V., Krishna Dr, J.S.V.R.P.: Numerical solution for two dimensional Laplace equation with Dirichlet boundary conditions. Int. Organ. Sci. Res.—J. Math. 4, 66–75 (2013)

    Google Scholar 

  27. Patil, P.V., Krishna Dr, J.S.V.R.P.: A numerical grid and grid less (Mesh less) techniques for the solution of 2D Laplace equation. Adv. Appl. Sci. Res. Pelagia Res. Libr. 1, 150–155 (2014)

    Google Scholar 

  28. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  29. Collatz, L.: The Numerical Treatment of Differential Equations, 3rd edn. Springer, Berlin (1960)

    Book  MATH  Google Scholar 

  30. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. Siam, Philadelphia (2007)

    Book  MATH  Google Scholar 

  31. Thomas, J.W.: Numerical Partial Differential Equations: Finite Difference Method. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  32. Lakner, M., Igor, P.: The finite differences method for solving systems on irregular shapes. Comput. Chem. Eng. 32, 2891–2896 (2008)

    Article  Google Scholar 

  33. Benito, J.J., Urena, F., Gavete, L.: Influence of several factors in the generalized finite difference method. Appl. Math. Model. 25, 1039–1053 (2001)

    Article  MATH  Google Scholar 

  34. Liszka, T., Janusz, O.: The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Struct. 11, 83–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  35. Perrone, N., Robert, K.: A general finite difference method for arbitrary meshes. Comput. Struct. 5, 45–57 (1975)

    Article  MathSciNet  Google Scholar 

  36. Jensen, P.S.: Finite difference techniques for variable grids. Comput. Struct. 2, 17–29 (1972)

    Article  Google Scholar 

  37. Shortley, G.H., Weller, R.: The numerical solution of Laplace’s equation. J. Appl. Phys. 9, 334–348 (1938)

    Article  MATH  Google Scholar 

  38. Weller, R., Shortley, G.H., Fried, B.: The solution of torsion problems by a numerical integration of the Poisson’s equation. J. Appl. Phys. 11, 283–290 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  39. Buzbee, B.L., Gene, H.G., Clair, W.N.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  MathSciNet  Google Scholar 

  40. Davis, T. A.: Direct Methods for Sparse Linear Systems, vol. 2. Siam (Society for Industrial and Applied Mathematics) Philadelphia, PA (2006)

  41. Bunch, J.R., Beresford, N.P.: Direct methods for solving symmetric indefinite systems of linear equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

    Article  MathSciNet  Google Scholar 

  42. Duff I.S.: Combining direct and iterative methods for the solution of large systems in different application areas. Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France, Tech. Rep. TR/PA/04/128 (2004)

  43. Bylina, B., Bylina, J.: Linking of direct and iterative methods in Markovian models solving. In: Proceedings of the International Multiconference on Computer Science and Information Technology, Wisła, Poland. 2, 467–477 (2007)

  44. Saad, Y., Van Der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Saad, Y.: Iterative Methods for Sparse Linear Systems. Siam (Society for Industrial and Applied Mathematics). Philadelphia, PA (2003)

  46. Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Charact. 210, 307–357 (1911)

    Article  MATH  Google Scholar 

  47. Liebmann, H.: Die angenäherte Ermittlung harmonischer Funktionen und konformer Abbildungen. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-Phys. Klasse 3, 385–416 (1918)

  48. Baek, T.H.: Digital image processing technique for photoelastic isochromatic fringe sharpening. J. Korean Soc. Precis. Eng. 10, 220–230 (1993)

    Google Scholar 

  49. Frocht, M.M.: Photoelasticity, vol. II. Wiley, New York (1948)

    Google Scholar 

  50. Frocht, M.M., Leven, M.M.: A rational approach to the numerical solution of Laplace’s equation (the four-point influence method). J. Appl. Phys. 12, 596–604 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  51. Frocht, M.M.: A photoelastic investigation of stress concentrations due to small fillets and grooves in tension. Technical Notes, National Advisory Committee on Aeronautics, Washington, NACA TN-2442 (1951)

Download references

Acknowledgments

This work was supported by: Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, Algeria, under Grant Agreement No. J0301920130020. We would like to thank Adrian Tawanda Mhondiwa for the English improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rezini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezini, D., Baki, T. & Rahmani, Y. A new concept of plane stress analysis of notched flat bar in axial tension. Arch Appl Mech 86, 1483–1494 (2016). https://doi.org/10.1007/s00419-016-1130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-016-1130-z

Keywords

Navigation