Skip to main content
Log in

Theoretical framework of modeling of ionic EAPs within the Theory of Porous Media

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A thermo-electromechanical formulation for the description of ionic electroactive polymers is derived within the framework of the Theory of Porous Media. The model consists of an electrically charged porous solid saturated with an ionic solution. The saturated porous medium is assumed to be incompressible. Different constituents following different kinematic paths are considered such as solid, fluid, anions, cations and free charges. The electromechanical and the electrodynamic field equations are discussed. Based on the second law of thermodynamics, a consistent model is developed. With respect to the closure problem of the model, the needed constitutive relations and evolution equations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\mathbf{b}\) :

Gravity (\( \mathrm{m}/\mathrm{s}^2\))

\(\mathbf{b}^\alpha _\mathrm{e}= \rho ^\alpha _\mathrm{e}\, \mathbf{e}^\alpha _\mathrm{e}+ ( \mathrm{grad}\,\mathbf{e}^\alpha _\mathrm{e}) \, \mathbf{p}^\alpha _\mathrm{e}\) :

Electrical body force (\( \mathrm{N}/\mathrm{m}^3\))

\(\mathbf{B}_\alpha = \mathbf{F}_\alpha \, \mathbf{F}_\alpha ^\mathrm{T}\) :

Left Cauchy–Green deformation tensor

\(\mathbf{C}_\alpha = \mathbf{F}_\alpha ^\mathrm{T}\, \mathbf{F}_\alpha \) :

Right Cauchy–Green deformation tensor

\(\mathrm{c}^\alpha _\mathrm{m}\) :

Molar concentration (\(\mathrm{m}\mathrm{o}\mathrm{l}/\mathrm{m}^3\))

\(\mathrm{c}^\alpha _\mathrm{e}\) :

Coefficient of electrostriction (\(\mathrm{C}/\mathrm{V}\, \mathrm{m}\))

\(\mathbf{c}^\alpha _\mathrm{e}\) :

Electro momentum couple density (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{d}^\alpha _\mathrm{e}\) :

Electric displacement (\(\mathrm{C}/\mathrm{m}^2\))

\(\mathbf{D}_\alpha = \displaystyle {\frac{1}{2}} \, ( \, \mathbf{L}_\alpha + \mathbf{L}^\mathrm{T}_\alpha \, )\) :

Symmetric part of the spatial velocity gradient (\(1/\mathrm{s}\))

\(\mathbf{e}^\alpha _{\mathrm{e}0\alpha }= - \, \mathbf{F}^\mathrm{T}_\alpha \, \mathrm{grad}\,_\alpha \phi ^\alpha _\mathrm{e}\) :

Electric field, reference configuration of \(\varphi ^\alpha \) (\(\mathrm{V}/\mathrm{m}\))

\(\mathbf{e}^\alpha _\mathrm{e}= - \, \mathrm{grad}\,\phi ^\alpha _\mathrm{e}\) :

Electric field (\(\mathrm{V}/\mathrm{m}\))

\(\hat{\mathrm{e}}^\alpha \) :

Total production term, energy (\(\mathrm{N}/\mathrm{m}^2 \, \mathrm{s}\))

\(\mathbf{F}^\alpha = \displaystyle {\frac{\partial \varvec{\chi }_\alpha }{\partial \mathbf{X}_\alpha }} \, = \, \mathrm{Grad}\,_\alpha \mathbf{x}\) :

Deformation gradient

\(\mathrm{g}^\alpha _\mathrm{e}= \psi ^\alpha - \displaystyle {\frac{1}{\rho ^\alpha }} \, \mathbf{e}^\alpha _\mathrm{e}\, \cdot \, \mathbf{p}^\alpha _\mathrm{e}\) :

Specific electric Gibbs energy function (\(\mathrm{J}/ \mathrm{k}\mathrm{g}\))

\(\hat{\mathbf{h}}^\alpha \) :

Total production term, moment of momentum (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{I}\) :

Identity tensor

\(\mathbf{j}^\alpha _\mathrm{e}\) :

Electrical current density (\(\mathrm{A}/\mathrm{m}^2\))

\(\mathrm{J}_\alpha = \mathrm{det}\,\mathbf{F}_\alpha \) :

Jacobian, determinant of the deformation gradient

\(\mathrm{k}^\alpha \) :

Compression modulus (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{K}_\alpha = \displaystyle {\frac{1}{2}} \, ( \, \mathbf{B}_\alpha - \mathbf{I}\, )\) :

Karni–Reiner strain tensor

\(\mathbf{L}_\alpha = \displaystyle {\frac{\partial \mathbf{x}^\prime _\alpha }{\partial \mathbf{x}}} \, = \, \mathrm{grad}\,\mathbf{x}^\prime _\alpha \) :

Spatial velocity gradient (\(1/\mathrm{s}\))

\(\mathrm{m}^\alpha _\mathrm{m}\) :

Molar mass (\(\mathrm{k}\mathrm{g}/\mathrm{m}\mathrm{o}\mathrm{l}\))

\(\hat{\mathbf{m}}^\alpha \) :

Direct production term, moment of momentum (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathrm{n}^\alpha _0\) :

Initial volume fraction

\(\mathrm{n}^\alpha \) :

Volume fraction

\(\mathbf{n}\) :

normal Vector

\(\hat{\mathbf{p}}^\alpha \) :

Direct production term, momentum (\(\mathrm{N}/\mathrm{m}^3\))

\(\hat{\mathbf{p}}^\alpha _\mathrm{E}\) :

Effective direct production term, momentum (\(\mathrm{N}/\mathrm{m}^3\))

\(\mathbf{p}^\alpha _\mathrm{e}\) :

Polarization (\(\mathrm{C}/\mathrm{m}^2\))

\(\mathbf{q}^\alpha \) :

Heat influx vector (\(\mathrm{J}/\mathrm{m}^2 \, \mathrm{s}\))

\(\mathrm{r}^\alpha \) :

External heat supply (\(\mathrm{J}/\mathrm{k}\mathrm{g}\, \mathrm{s}\))

\(\mathrm{R}\) :

Universal gas constant (\(\mathrm{J}/\mathrm{K}\, \mathrm{m}\mathrm{o}\mathrm{l}\))

\(\hat{\mathbf{s}}^\alpha \) :

Total production term, momentum (\(\mathrm{N}/\mathrm{m}^3\))

\(\mathbf{S}^\alpha \) :

Second Piola-Kirchhoff stress tensor (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{t}^\alpha \) :

Traction vector (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{T}^\alpha = \displaystyle {\frac{1}{\mathrm{J}_\alpha }} \, \mathbf{F}_\alpha \, \mathbf{S}^\alpha \, \mathbf{F}_\alpha ^\mathrm{T}\) :

Cauchy stress tensor (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{T}^\alpha _\mathrm{E}\) :

Effective Cauchy stress tensor (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathbf{w}_{\alpha \mathrm{S}}\) :

Seepage velocity (\(\mathrm{m}/\mathrm{s}\))

\(\mathbf{W}_\alpha = \displaystyle {\frac{1}{2}} \, ( \, \mathbf{L}_\alpha - \mathbf{L}^\mathrm{T}_\alpha \, )\) :

Skew-symmetric part of the spatial velocity gradient (\(1/\mathrm{s}\))

\(\mathbf{x}= \mathbf{x}\, ( \, \mathbf{X}_\alpha \, , \, t \, )\) :

Position vector, present configuration (\(\mathrm{m}\))

\(\mathbf{x}^\prime _\alpha \) :

Velocity (\(\mathrm{m}/\mathrm{s}\))

\(\mathbf{x}^{\prime \prime }_\alpha \) :

acceleration (\(\mathrm{m}/\mathrm{s}^2\))

\(\mathbf{X}_\alpha = \mathbf{X}_\alpha \, ( \, \mathrm{X}_\alpha \, , \, t_0 \, )\) :

Position vector, reference configuration (\(\mathrm{m}\))

\(\alpha ^\alpha _{\varTheta }\) :

Heat expansion coefficient (\(1/\mathrm{K}\))

\(\varepsilon ^\alpha = \psi ^\alpha + {\varTheta }^\alpha \, \eta ^\alpha \) :

Specific internal energy (\(\mathrm{J}/\mathrm{k}\mathrm{g}\))

\(\varepsilon ^\alpha _\mathrm{e}\) :

Specific electric energy (\(\mathrm{N}/\mathrm{m}^2 \, \mathrm{s}\))

\(\hat{\varepsilon }^\alpha \) :

Direct production term, energy (\(\mathrm{N}/\mathrm{m}^2 \, \mathrm{s}\))

\(\eta ^\alpha \) :

Specific entropy (\(\mathrm{J}/\mathrm{K}\, \mathrm{k}\mathrm{g}\))

\({\varTheta }^\alpha _0\) :

Initial temperature (\(\mathrm{K}\))

\({\varTheta }^\alpha \) :

Absolute temperature (\(\mathrm{K}\))

\(\hat{\kappa }^\alpha _\mathrm{e}\) :

Total production, electric flux (\(\mathrm{C}/\mathrm{m}^3\))

\(\lambda ^\alpha \) :

Lam\(\acute{\mathrm{e}}\) constants (\(\mathrm{N}/\mathrm{m}^2\))

\(\mu ^\alpha \) :

Lam\(\acute{\mathrm{e}}\) constants (\(\mathrm{N}/\mathrm{m}^2\))

\(\mu ^\alpha _{\mathrm{c}\mathrm{p}}\) :

Chemical potential (\(\mathrm{J}/\mathrm{k}\mathrm{g}\))

\(\mu ^\alpha _{\mathrm{m}0}\) :

Chemical potential, molar (\(\mathrm{J}/\mathrm{m}\mathrm{o}\mathrm{l}\))

\({\varvec{\pi }}^\alpha _\mathrm{e}= 1 / \rho ^\alpha \, \mathbf{p}^\alpha _\mathrm{e}\) :

Polarization per unit mass (\(\mathrm{C}\,\mathrm{m}/\mathrm{k}\mathrm{g}\))

\(\rho ^{\alpha \mathrm{R}}\) :

Real density (\(\mathrm{k}\mathrm{g}/\mathrm{m}^3\))

\(\rho ^\alpha = \mathrm{n}^\alpha \, \rho ^{\alpha \mathrm{R}}\) :

partial density (\(\mathrm{k}\mathrm{g}/\mathrm{m}^3\))

\(\hat{\rho }^\alpha \) :

Total production term, mass (\(\mathrm{k}\mathrm{g}/\mathrm{m}^3 \, \mathrm{s}\))

\(\hat{\rho }^\alpha _\mathrm{e}\) :

Production of electric charge (\(\mathrm{A}/\mathrm{m}^3\))

\(\rho ^\alpha _\mathrm{e}\) :

Electric charge density (\(\mathrm{C}/\mathrm{m}^3\))

\(\phi ^\alpha _\mathrm{e}\) :

Electrical potential (\(\mathrm{V}\))

\({\varvec{\chi }}_\alpha \) :

Function of motion (\(\mathrm{m}\))

\(\psi ^\alpha \) :

Specific Helmholtz free energy (\(\mathrm{J}/\mathrm{k}\mathrm{g}\))

\(\mathcal{P}\) :

Lagrangean multiplier (pressure) (\(\mathrm{N}/\mathrm{m}^2\))

\(\mathcal{E}\) :

Lagrangean multiplier (related to electrical potential) (\(\mathrm{V}\))

\(\mathcal{SC}\) :

Set of constitutive relations

\(\mathcal{SP}\) :

Set of process variables

\(\mathcal{SU}\) :

Set of unknown fields

References

  1. Acartürk, Y.A.: Simulation of charged hydrated porous materials. Ph.D. thesis, Report No.: II-18, Institut für Mechanik (Bauwesen), Lehrstuhl II, Prof. Dr.-Ing. W. Ehlers, Universität Stuttgart (2009)

  2. Akle, B., Habchi, W., Wallmersperger, T.: Mechano-chemo-electrical finite element modelling of the sensing behaviour of ionic polymer metal composites. In: The Eighth International Conference on Engineering Computational Technology (2012)

  3. Ask, A., Menzel, A., Ristinmaa, M.: Electrostriction in electro-viscoelastic polymers. Mech. Mater. 50, 9–21 (2012)

    Article  Google Scholar 

  4. Atkin, R., Craine, R.: Continuum theories of mixtures: basic theory and historical development. Quart. J. Mech. Appl. Math. 29, 209–244 (1975)

    Article  MathSciNet  Google Scholar 

  5. Bar-Cohen, Y., Kim, K.J., Choi, H.R., Madden, J.D.W.: Electroactive polymer materials. Smart Mater. Struct. 16 (2007)

  6. Bar-Cohen, Y., Sherrit, S., Lih, S.S.: Characterization of the electromechanical properties of eap materials. In: SPIE 8th International Symposium on Smart Structures and Materials 4329 (2001)

  7. Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33, 173–181 (2008)

    Article  Google Scholar 

  8. Bennethum, L.S., Cushman, J.H.: Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transp. Porous Media 47, 309–336 (2002)

    Article  MathSciNet  Google Scholar 

  9. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  10. Bluhm, J.: Modelling of saturated thermo-elastic porous solids with different phase temperatures. In: Ehlers, W., Bluhm, J. (eds.) Porous Media, pp. 87–118. Springer, Berlin (2002)

  11. Bluhm, J., Ricken, T., Blossfeld, W.M.: Dynamic phase transition border under freezing-thawing load in porous media—a multiphase description. Technical report 47, Institut of Mechanics, University of Duisburg-Essen, Germany (2009)

  12. de Boer, R.: Theory of Porous Media. Springer, New York (2000)

    Book  MATH  Google Scholar 

  13. de Boer, R., Ehlers, W.: Theorie der Mehrkomponentenkontinua mit Anwendung auf bodenmechanische Probleme. Technical report, Universität - Gesamthochschule - Essen (1986)

  14. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III, pp. 1–127. Academic Press, New York (1976)

    Chapter  Google Scholar 

  15. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  16. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  17. Branco, P., Dente, J.: Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (ipmc) electromechanics. Smart Mater. Struct. 15, 378–392 (2006)

    Article  Google Scholar 

  18. Bufalo, G.D., Placidi, L., Porfiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Sturct. 17, 045010 (2008)

    Article  Google Scholar 

  19. Chen, J., Ma, G.: Modelling deformation behaviour of polyelectrolyte gels under chemo-electro-mechanical coupling effects. Int. J. Numer. Methods Eng. 68, 1052–1071 (2006)

    Article  MATH  Google Scholar 

  20. Courant, R., Hilbert, D. (eds.): Methods of Mathematical Physics, Volume 2, Differential Equations, vol. 2. Wiley, New York (2008)

    Google Scholar 

  21. Ehlers, W.: Poröse Medien - ein kontinuummechanisches Modell auf der Basis der Mischungstheorie. Habilitationsschrift, Universität - Gesamthochschule - Essen (1989)

  22. Ehlers, W.: Constitutive equations for granular materials in geomechanical context. In: Hutter, K. (ed.) Continuum Mechanics in Environmental Sciences and Geophysics, CISM Courses and Lectures No. 337. Springer, Wien, pp. 313–402 (1993)

  23. Ehlers, W.: Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik 16, 63–76 (1996)

    Google Scholar 

  24. Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media, pp. 3–86. Springer, Berlin (2002)

  25. Ehlers, W., Bluhm, J. (eds.): Porous Media. Springer, New York (2002)

    MATH  Google Scholar 

  26. Enikov, E.T., Seo, G.S.: Numerical analysis of muscle-like ionic polymer actuators. Biotechnol. Prog. 22, 96–105 (2006)

    Article  Google Scholar 

  27. Eringen, A., Maugin, G. (eds.): Electrodynamics of Continua I: Foundations and Solid Media. Springer, New York (1990)

    Google Scholar 

  28. Eringen, A.C.: A mixture theory of electromagnetism and superconductivity. Int. J. Eng. Sci. 36, 525–543 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen. Ingenieur-Archiv 23, 182–185 (1955)

    Article  MathSciNet  Google Scholar 

  30. Heinrich, G., Desoyer, K.: Hydromechanische Grundlagen für die Behandlung von stationären und instationären Grundwasserströmungen II. Mitteilung. Ingenieur-Archiv 24, 81–84 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Heinrich, G., Desoyer, K.: Theorie dreidimensionaler Setzungsvorgänge in Tonschichten. Ingenieur-Archiv 30, 225–253 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hutter, K., van de Ven, A.A.F., Urescu, A. (eds.): Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids. Springer, New York (2006)

    Google Scholar 

  33. Huyghe, J.M., Janssen, J.D.: Thermo-chemo-electro-mechanical of saturated charged porous solids. Transp. Porous Media 34, 129–141 (1999)

    Article  Google Scholar 

  34. Kanno, R., Tadokoro, S., Takamori, T., Hattori, M.: Linear approximate dynamic model of icpf actuator. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 219–225 (1996)

  35. Keip, M.A.: Modeling of electro-mechanically coupled materials on multiple scales. Ph.D. thesis, University of Duisburg-Essen (2012)

  36. Leo, D., Farinholt, K., Wallmersperger, T.: Computational models of ionic transport and electromechanical transduction in ionomeric polymer transducers. Proc. SPIE 5759, 170–181 (2005)

    Article  Google Scholar 

  37. Levenston, M.E., Eisenberg, S.R., Grodzinsky, A.J.: A variational formulation for coupled physicochemical flows during finite deformations of charged porous media. Int. J. Solids Struct. 35, 4999–5019 (1998)

    Article  MATH  Google Scholar 

  38. Markert, B.: Weak or strong on coupled problems in continuum mechanics. Habilitation, Institut für Mechanik (Bauwesen) Lehrstuhl II, Report Nr. II-20 (2010)

  39. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and relaxation of articular cartilage in compression: theory and experiments. ASME J. Biomech. Eng. 102, 73–84 (1980)

    Article  Google Scholar 

  40. Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer–metal composites. J. Appl. Phys. 92, 2899–2915 (2002)

    Article  Google Scholar 

  41. Nemat-Nasser, S., Li, J.: Electromechanical response of ionic polymer–metal composites. J. Appl. Phys. 87, 3321–3331 (2000)

    Article  Google Scholar 

  42. Nemat-Nasser, S., Wu, Y.: Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93, 5255–5267 (2003)

    Article  Google Scholar 

  43. Nemat-Nasser, S., Zamani, S., Tor, Y.: Effects of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99(104), 902 (2006)

    Google Scholar 

  44. Newburry, K.M., Leo, D.J.: Linear electromechanical model of ionic polymer transducers part I: model development. J. Intell. Mater. Syst. Struct. 14, 333–342 (2003)

    Article  Google Scholar 

  45. Newburry, K.M., Leo, D.J.: Linear electromechanical model of ionic polymer transducers part II: experimental validation. J. Intell. Mater. Syst. Struct. 14, 343–357 (2003)

    Article  Google Scholar 

  46. Oguro, K., Kawami, Y., Takenaka, Y.: Bending of ion-conducting polymer–film–electrode composite by an electric stimulus at low voltage. Trans. J. Micromach. Soc. 5, 27–30 (1992)

    Google Scholar 

  47. Röntgen, W.C.: About the changes in shape and volume of dielectrics caused by electricity. Annu. Phys. Chem. Ser. 11, 771–786 (1880)

    Article  Google Scholar 

  48. Shahinpoor, M., Bar-Cohen, Y., Simpson, J., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—a review. Smart Mater. Struct. 7, R15–R30 (1998)

    Article  Google Scholar 

  49. Shahinpoor, M., Kim, K.J., Leo, D.J.: Ionic polymer–metal composites as multifunctional materials. Polym. Compos. 24, 24–33 (2003)

    Article  Google Scholar 

  50. Truesdell, C.: Thermodynamics of diffusion. In: Truesdell, C. (ed.) Rational Thermodynamics, 2nd edn, pp. 219–236. Springer, New York (1984)

    Chapter  Google Scholar 

  51. Truesdell, C., Toupin, R.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 226–902. Springer, Berlin (1960)

    Google Scholar 

  52. Wallmersperger, T., Akle, B., Leo, D., Kröplin, B.: Electromechanical response in ionic polymer transducers: an experimental and theoretical study. Compos. Sci. Technol. 68, 1173–1180 (2008)

    Article  Google Scholar 

  53. Wallmersperger, T., Horstmann, A., Kröplin, B., Leo, D.: Thermodynamical modeling of the electromechanical behavior of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 20, 741–750 (2009)

    Article  Google Scholar 

  54. Wallmersperger, T., Leo, D., Kothera, C.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 93, 5255–5267 (2009)

    Google Scholar 

  55. Xiao, Y., Bhattacharya, K.: Modeling electromechanical properties of ionic polymers. In: SPIE 8th International Symposium on Smart Structures and Materials, pp. 292–300 (2001)

Download references

Acknowledgments

This work has been supported by the German Research Society (DFG) within the Priority Program SPP 1713 “Modeling of Ionic Electroactive Polymers–Consistent Formulation of the thermo-electro-chemo-mechanical coupling effects and Finite-Element Discretization.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bluhm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bluhm, J., Serdas, S. & Schröder, J. Theoretical framework of modeling of ionic EAPs within the Theory of Porous Media. Arch Appl Mech 86, 3–19 (2016). https://doi.org/10.1007/s00419-015-1110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1110-8

Keywords

Navigation