Skip to main content
Log in

A causal fractional derivative model for acoustic wave propagation in lossy media

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This study proposes a dissipative acoustic equation in time-space domain including fractional derivative to describe the characteristic impedance and the propagation coefficient, which has been observed in an experimental study on the fibrous absorbent materials by Delany and Bazley. The parameters of characteristic impendence are obtained by fitting experimental data. The present fractional derivative model can be deduced by characteristic impendence, continuity equation, and state equation, of which the fractional order possesses clear physical meaning of the acoustical properties for porous materials. The attenuation and dispersion functions of the present model obey the Kramers–Kronig relation and agree well with the experimental results, where the fractional order is found to be 0.63 via data fitting. Finally, the proposed model is applied to normal incidence energy absorption aiming at investigating the effect of fractional order on the absorption coefficient with respect to the wave frequency. According to the power-law dissipative relationship, the fractional order in the present wave model ranges from 0 to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yoon, G.H.: Acoustic topology optimization of fibrous material with Delany–Bazley empirical material formulation. J. Sound Vib. 332(5), 1172–1187 (2013)

    Article  Google Scholar 

  2. Fouladi, M.H., Ayub, M., Nor, M.J.M.: Analysis of coir fiber acoustical characteristics. Appl. Acoust. 72(1), 35–42 (2011)

    Article  Google Scholar 

  3. Zhang, B., Chen, T.N.: Calculation of sound absorption characteristics of porous sintered fiber metal. Appl. Acoust. 70(2), 337–346 (2009)

    Article  Google Scholar 

  4. Selezov, I., Volynski, R.: Wave refraction and sediment dynamics modeling in coastal zone. In: AVERS (2013)

  5. Delany, M.E., Bazley, E.N.: Acoustical properties of fibrous absorbent materials. Appl. Acoust. 3(2), 105–116 (1970)

    Article  Google Scholar 

  6. Miki, Y.: Acoustical properties of porous materials—modifications of Delany–Bazley models. J. Acoust. Soc. Jpn. (E) 11(1), 19–24 (1990)

    Article  MathSciNet  Google Scholar 

  7. Attenborough, K.: Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am. 73(3), 785–799 (1983)

    Article  MATH  Google Scholar 

  8. Wilson, D.K.: Simple, relaxational models for the acoustical properties of porous media. Appl. Acoust. 50(3), 171–188 (1997)

    Article  Google Scholar 

  9. Lafarge, D., Lemarinier, P., Allard, J.F., Tarnow, V.: Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 102(4), 1995–2006 (1997)

    Article  Google Scholar 

  10. Fellah, Z.E.A., Depollier, C., Fellah, M.: Application of fractional calculus to the sound waves propagation in rigid porous materials: validation via ultrasonic measurements. Acta Acust. United Acust. 88(1), 34–39 (2002)

    Google Scholar 

  11. Fellah, Z.E.A., Depollier, C.: Transient acoustic wave propagation in rigid porous media time-domain approach. J. Acoust. Soc. Am. 107(2), 683–688 (2000)

    Article  Google Scholar 

  12. Fellah, Z.E.A., Berger, S., Lauriks, W., Depollier, C., Fellah, M.: Measuring the porosity of porous materials having a rigid frame via reflected waves: a time domain analysis with fractional derivatives. J. Appl. Phys. 93(1), 296–303 (2003)

    Article  Google Scholar 

  13. Szabo, T.L.: Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Am. 97(1), 14–24 (1995)

    Article  Google Scholar 

  14. He, P.: Simulation of ultrasound pulse propagation in lossy media obeying a frequency power law. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 114–125 (1998)

    Article  Google Scholar 

  15. Szabo, T.L.: Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96(1), 491–500 (1994)

    Article  Google Scholar 

  16. Kramers, H.A.: La diffusion de la lumière par les atomes. Atti Congr. Int. Fis. Como. 2, 545–557 (1927)

    Google Scholar 

  17. de Kronig, R.L.: On the theory of dispersion of X-rays. J. Opt. Soc. Am. 12(6), 547–556 (1926)

    Article  Google Scholar 

  18. Horton Sr, C.W.: Dispersion relationships in sediments and sea water. J. Acoust. Soc. Am. 55(3), 547–549 (1974)

    Article  MathSciNet  Google Scholar 

  19. Horton Sr., C.W.: Comment on “Kramers–Kronig relationship between ultrasonic attenuation and phase velocity” [J. Acoust. Soc. Am. 69, 696-701 (1981)]. J. Acoust. Soc. Am. 70, 1182 (1981)

  20. Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Baeumer, B.: Stochastic solution of spacetime fractional diffusion equations. Phys. Rev. E 65(4), 041103 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388(21), 4586–4592 (2009)

    Article  Google Scholar 

  22. Mainardi, F., Spada, G.: Creep relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. Spec. Top. 193(1), 133–160 (2011)

    Article  Google Scholar 

  23. Bagley, R.L.: Power law and fractional calculus model of viscoelasticity. AIAA J. 27(10), 1412–1417 (1987)

    Article  Google Scholar 

  24. Chen, W., Holm, S.: Modified Szabos wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114(5), 2570–2574 (2003)

    Article  Google Scholar 

  25. Chen, W., Holm, S.: Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115(4), 1424–1230 (2004)

    Article  MathSciNet  Google Scholar 

  26. Meerschaert, M.M., Straka, P., Zhou, Y., McGough, R.J.: Stochastic solution to a time fractional attenuated wave equation. Nonlinear Dynam. 70(2), 1273–1281 (2012)

    Article  MathSciNet  Google Scholar 

  27. Machadoa, J.T., Kiryakovab, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  29. Holm, S., Näsholm, S.P.: A causal and fractional all-frequency wave equation for lossy media. J. Acoust. Soc. Am. 130(4), 2195–2202 (2011)

    Article  Google Scholar 

  30. Holm, S., Sinkus, R.: A unifying fractional wave equation for compressional and shear waves. J. Acoust. Soc. Am. 127(1), 542–548 (2010)

    Article  Google Scholar 

  31. Marks, R.B., Williams, D.F.: Characteristic impedance determination using propagation constant measurement. IEEE Microw. Guided W. 1(6), 141–143 (1991)

    Article  Google Scholar 

  32. Bagley, R.L., Torvik, P.J.: Fractional calculus-a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (1983)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported the National Science Funds for Distinguished Young Scholars (11125208) and the 111 Project (Grant No. B12032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Hu, S. & Cai, W. A causal fractional derivative model for acoustic wave propagation in lossy media. Arch Appl Mech 86, 529–539 (2016). https://doi.org/10.1007/s00419-015-1043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1043-2

Keywords

Navigation