Skip to main content
Log in

Theoretical analysis of interfacial debonding and fiber pull-out in fiber-reinforced polymer-matrix composites

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A theoretical model is proposed to predict the interfacial debonding length and fiber pull-out length in fiber-reinforced polymer-matrix composites. The stress and displacement fields of fiber and matrix are derived considering the dual phase region model, and the relation between the pull-out length and debonding length of fiber is obtained. The interface debonding criterion is given based on the energy release rate relation in an interface debonding process. The formulas are applied in glass fiber-reinforced epoxy composites to demonstrate the newly theoretical model. The theoretical predictions of present model agree well with the experimental results. Several parameters studies are performed to analyze the debonding length and the pull-out length of fiber in glass fiber-reinforced epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim, J.K., Baillie, C., Mai, Y.W.: Interfacial debonding and fibre pull-out stresses Part I Critical comparison of existing theories with experiments. J. Mater. Sci. 27, 3143–3154 (1991)

    Article  Google Scholar 

  2. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Brit. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  3. McCartney, L.N.: New theoretical model of stress transfer between fibre and matrix in a uniaxially fibre-reinforced composite. Proc. R. Soc. Lond. A 425, 215–244 (1989)

    Article  MathSciNet  Google Scholar 

  4. Hsueh, C.H.: A modified analysis for stress transfer in fiber-reinforced composites with bonded fiber ends. J. Mater. Sci. 30, 219–224 (1995)

    Article  Google Scholar 

  5. Nairn, J.A.: On the use of shear-lag methods for analysis of stress transfer in unidirectional composites. Mech. Mater. 26, 63–80 (1997)

    Article  Google Scholar 

  6. Fu, S.Y., Yue, C.Y., Hu, X., Mai, Y.W.: Analyses of the micromechanics of stress transfer in single-and multi-fiber pull-out tests. Compos. Sci. Technol. 60, 569–579 (2000)

    Article  Google Scholar 

  7. Qing, H.: A new theoretical model of the quasistatic single-fiber pullout problem: Analysis of stress field. Mech. Mater. 60, 66–79 (2013)

    Article  Google Scholar 

  8. Gao, X.L., Li, K.: A shear-lag model for carbon nanotube-reinforced polymer composites. Int. J. Solids Struct. 42, 1649–1667 (2005)

    Article  MATH  Google Scholar 

  9. Haque, A., Ramasetty, A.: Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites. Compos. Struct. 71, 68–77 (2005)

    Article  Google Scholar 

  10. Tsai, H.C., Arocho, A.M., Gause, L.W.: Prediction of fiber-matrix interphase properties and their influence on interface stress, displacement and fracture toughness of composite material. Mater. Sci. Eng. A 126, 295–304 (1990)

    Article  Google Scholar 

  11. Monette, L., Anderson, M.P., Grest, G.S.: Effect of interphase modulus and cohesive energy on the critical aspect ratio in short-fibre composites. J. Mater. Sci. 28, 79–99 (1993)

    Article  Google Scholar 

  12. Afonso, J.C., Ranalli, G.: Elastic properties of three-phase composites: analytical model based on the modified shear-lag model and the method of cells. Compos. Sci. Technol. 65, 1264–1275 (2005)

    Article  Google Scholar 

  13. Zhang, J., He, C.: A three-phase cylindrical shear-lag model for carbon nanotube composites. Acta Mech. 196, 33–54 (2008)

    Article  MATH  Google Scholar 

  14. Yao, Y., Chen, S.H., Chen, P.J.: The effect of a graded interphase on the mechanism of stress transfer in a fiber-reinforced composite. Mech. Mater. 58, 35–54 (2013)

    Article  Google Scholar 

  15. Yao, Y., Chen, S.H.: The effects of fiber’s surface roughness on the mechanical properties of fiber-reinforced polymer composites. J. Compos. Mater. 47, 2909–2923 (2013)

    Article  Google Scholar 

  16. Toll, S.: Second order shear lag theory. Compos. Sci. Technol. 72, 1313–1317 (2012)

    Article  Google Scholar 

  17. Lawrence, P.: Some theoretical considerations of fibre pull-out from an elastic matrix. J. Mater. Sci. 7, 1–6 (1972)

    Article  Google Scholar 

  18. Aveston, J., Kelly, A.: Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352–362 (1973)

    Article  Google Scholar 

  19. Takaku, A., Arridge, R.G.C.: The effect of interfacial radial and shear stress on fibre pull-out in composite materials. J. Phys. D: Appl. Phys. 6, 2038–2047 (1973)

    Article  Google Scholar 

  20. Hsueh, C.H.: Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites. Mater. Sci. Eng. A 123, 1–11 (1990)

    Article  Google Scholar 

  21. Gurney, C., Hunt, J.: Quasi-static crack propagation. Proc. R. Soc. Lond. A 299, 508–524 (1967)

    Article  Google Scholar 

  22. Budinasky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids 34, 167–189 (1986)

    Article  Google Scholar 

  23. Budiansky, B., Evans, A.G., Hutchinson, J.W.: Fiber-matrix debonding effects on cracking in aligned fiber ceramic composites. Int. J. Solids Struct. 32, 315–328 (1995)

    Article  MATH  Google Scholar 

  24. Stang, H., Shah, S.P.: Failure of fibre-reinforced composites by pull-out fracture. J. Mater. Sci. 21, 953–957 (1986)

    Article  Google Scholar 

  25. McCartney, L.N.: Mechanics of matrix cracking in brittle-matrix fibre-reinforced composites. Proc. R. Soc. Lond. A 409, 329–350 (1987)

    Article  Google Scholar 

  26. Gao, Y.C., Mai, Y.W., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. (ZAMP) 39, 550–572 (1988)

    Article  MATH  Google Scholar 

  27. Charalambides, P.G., Evans, A.G.: Debonding properties of residually stressed brittle-matrix composites. J. Am. Ceram. Soc. 72, 746–753 (1989)

    Article  Google Scholar 

  28. Kerans, R.J., Parthasarathy, T.A.: Theoretical analysis of the fiber pullout and pushout tests. J. Am. Ceram. Soc. 74, 1585–1596 (1991)

    Article  Google Scholar 

  29. Zhou, L.M., Kim, J.K., Mai, Y.W.: Interfacial debonding and fibre pull-out stresses Part II A new model based on the fracture mechanics approach. J. Mater. Sci. 27, 3155–3166 (1992)

    Article  Google Scholar 

  30. Li, S.H., Shah, S.P., Li, Z.J., Toshio, M.: Micromechanical analysis of multiple fracture and evaluation of debonding behavior for fiber-reinforced composites. Int. J. Solids Struct. 30, 1429–1459 (1993)

    Article  Google Scholar 

  31. Hsueh, C.H.: Interfacial debonding and fiber pull-out stresses of fiber-reinforced composites: VIII: The energy-based debonding criterion. Mater. Sci. Eng. A 159, 65–72 (1992)

    Article  Google Scholar 

  32. Hsueh, C.H.: An asymptotic approach for debonding at the fiber-matrix interface. Mater. Sci. Eng. A 174, L17–L22 (1994)

    Article  Google Scholar 

  33. Chiang, Y.C.: On fiber debonding and matrix cracking in fiber-reinforced ceramics. Compos. Sci. Technol. 61, 1743–1756 (2001)

    Article  Google Scholar 

  34. Hsueh, C.H., Becher, P.F.: Interfacial shear debonding problems in fiber-reinforced ceramic composites. Acta Mater. 46, 3237–3245 (1998)

    Article  Google Scholar 

  35. Schreyer, H.L., Peffer, A.: Fiber pullout based on a one-dimensional model of decohesion. Mech. Mater. 32, 821–836 (2000)

    Article  Google Scholar 

  36. Pavia, F., Letertre, A., Curtin, W.A.: Prediction of first matrix cracking in micro/nanohybrid brittle matrix composites. Compos. Sci. Technol. 70, 916–921 (2010)

    Article  Google Scholar 

  37. Gao, Y.C.: Debonding along the interface of composites. Mech. Res. Comm. 14, 67–72 (1987)

    Article  MATH  Google Scholar 

  38. Gao, Y.C.: Damage modeling of fiber-reinforced materials. Theor. Appl. Fract. Mech. 11, 147–155 (1989)

    Article  Google Scholar 

  39. Gao, Y.C.: Damage theory of fiber-reinforced materials. Sci. China Ser. A 32, 953–961 (1989)

    MATH  Google Scholar 

  40. Chiang, Y.C., Wang, A.S.D., Chou, T.W.: On matrix cracking in fiber reinforced ceramics. J. Mech. Phys. Solids 41, 1137–1154 (1993)

    Article  MATH  Google Scholar 

  41. Sigl, L.S., Evans, A.G.: Effects of residual stress and frictional sliding on cracking and pull-out in brittle matrix composites. Mech. Mater. 8, 1–12 (1989)

    Article  Google Scholar 

  42. Hutchinson, J.W., Jensen, H.M.: Models of fiber debonding and pullout in brittle composites with friction. Mech. Mater. 9, 139–163 (1990)

    Article  Google Scholar 

  43. Huang, N.C., Liu, X.Y.: Debonding and fiber pull-out in reinforced composites. Theor. Appl. Fract. Mech. 21, 157–176 (1994)

    Article  Google Scholar 

  44. Chua, P.S., Piggot, M.R.: The glass fiber-polymer interface, I. Theoretical consideration for single fiber pull-out tests. Compos. Sci. Technol. 22, 33–42 (1985)

    Article  Google Scholar 

  45. Piggot, M.R.: Debonding and friction at fiber-polymer interfaces, I. Criteria for failure and sliding. Compos. Sci. Technol. 30, 295–306 (1987)

    Article  Google Scholar 

  46. Hsueh, C.H.: Crack-wake interfacial debonding criteria for fiber-reinforced ceramic composites. Acta Mater. 44, 2211–2216 (1996)

    Article  Google Scholar 

  47. Gao, Y.C., Zhou, L.M.: Energy release rate for interface debonding with prestress and friction. Theor. Appl. Fract. Mech. 32, 203–207 (1999)

    Article  Google Scholar 

  48. Zhang, S.Y.: A new model for the energy release rate of fiber/matrix interfacial fracture. Compos. Sci. Technol. 58, 163–166 (1998)

    Article  Google Scholar 

  49. Zhang, S.Y.: Debonding and cracking energy release rate of the fiber/matrix interface. Compos. Sci. Technol. 58, 331–335 (1998)

    Article  Google Scholar 

  50. Liu, Y.F., Kagawa, Y.: The energy release rate for an interfacial debond crack in a fiber pull-out model. Compos. Sci. Technol. 60, 167–171 (2000)

    Article  Google Scholar 

  51. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  52. Wells, J.K., Beaumont, P.W.R.: Debonding and pull-out processes in fibrous composites. J. Mater. Sci. 20, 1275–1284 (1985)

    Article  Google Scholar 

  53. Outwater, J.D., Murphy, M.C.: On the fracture energy of unidirectional laminates. 24th Annual Technical Conference on Composites (The Society of the Plastics Industry), New York (1969)

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (11272096, 11472086) and the Research Fund for the Doctoral Program of Higher Education of China (20112304110015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Wang, Z. Theoretical analysis of interfacial debonding and fiber pull-out in fiber-reinforced polymer-matrix composites. Arch Appl Mech 85, 745–759 (2015). https://doi.org/10.1007/s00419-015-0987-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-0987-6

Keywords

Navigation