Skip to main content
Log in

Numerical simulation and comparison of a real Al–Si alloy with virtually generated alloys

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Mechanical stress–strain curves are estimated by means of numerical simulation in order to analyze and compare the mechanical properties of a real strontium-modified Al–Si alloy with virtually designed materials. The virtual materials are generated by a competitive stochastic growth model of the 3D coral-like morphology of the eutectic Si in Al–Si alloys. The experimental data for the real material were acquired using FEB/SEM tomography. The numerical simulations are based on finite element methods. The effects of coarsening the mesh size and using different degrees of the finite elements are discussed. The simulations show that there is high conformity between the mechanical properties of the real and virtual materials. Experiments are also performed to show that the mechanical behavior of the realizations of the stochastic model is sensitive to changes in the parameters that control the morphological characteristics of the Si component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Braess D.: Finite Elemente. Springer, Berlin (2003)

    Book  Google Scholar 

  2. Closset B., Gruzleski J.: Structure and properties of hypoeutectic Al–Si–Mg alloys modified with pure strontium. Metall. Trans. A 13, 945–951 (1982)

    Article  Google Scholar 

  3. COMSOL multiphysics user’s guide. COMSOL—version 4.1 (2010)

  4. Gaiselmann G., Neumann M., Holzer L., Hocker T., Prestat M., Schmidt V.: Stochastic 3D modeling of LSC cathodes based on structural segmentation of FIB-SEM images. Comput. Mater. Sci. 67, 48–62 (2013)

    Article  Google Scholar 

  5. Gaiselmann G., Stenzel O., Kruglova A., Muecklich F., Schmidt V.: Competitive stochastic growth model for the 3D morphology of eutectic Si in Al–Si alloys. Comput. Mater. Sci. 69, 289–298 (2013)

    Article  Google Scholar 

  6. Gaiselmann G., Thiedmann R., Manke I., Lehnert W., Schmidt V.: Stochastic 3D modeling of fiber-based materials. Comput. Mater. Sci. 59, 75–86 (2012)

    Article  Google Scholar 

  7. Giannuzzi L., Stevie F.: Introduction to Focused Ion Beams. Springer, New York (2005)

    Book  Google Scholar 

  8. Gruzleski J., Closset B.: The Treatment of Liquid Aluminum–Silicon Alloys. American Foundrymen’s Society, Schaumburg (1990)

    Google Scholar 

  9. Haque M.: Effects of strontium on the structure and properties of aluminium–silicon alloys. J. Mater. Proc. Technol. 55, 193–198 (1995)

    Article  Google Scholar 

  10. Hegde S., Prabhu K.: Modification of eutectic silicon in Al–Si alloys. J. Mater. Sci. 43, 3009–3027 (2008)

    Article  Google Scholar 

  11. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  12. Meister A.: Numerik linearer Gleichungssysteme. Vieweg, Wiesbaden (2007)

    Google Scholar 

  13. Roland M., Kruglova A., Harste N., Mücklich F., Diebels S.: Numerical simulation of Al–Si alloys with and without a directional solidification. Image Anal. Stereol. 33, 29–37 (2014)

    Article  Google Scholar 

  14. Saad Y.: A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)

    Article  MathSciNet  Google Scholar 

  15. Saad Y., Schultz M.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  Google Scholar 

  16. Schenk O., Gärtner K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  17. Schenk O., Gärtner K.: On fast factorization pivoting methods for symmetric indefinite systems. Electron. Trans. Numer. Anal. 23, 158–179 (2006)

    MathSciNet  Google Scholar 

  18. Shin S.S., Kim E.S., Yeom G.Y., Lee J.C.: Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting. Mater. Sci. Eng. A 532, 151–157 (2012)

    Article  Google Scholar 

  19. Stenzel O., Hassfeld H., Thiedmann R., Koster L., Oosterhoot S., Bavel S.van , Wienk M., Loos J., Janssen R., Schmidt V.: Spatial modelling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data. Ann. Appl. Stat. 5, 1920–1947 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stenzel O., Koster L., Oosterhout S., Janssen R., Schmidt V.: A new approach to model-based simulation of disordered polymer blend solar cells. Adv. Funct. Mater. 22, 1236–1244 (2012)

    Article  MATH  Google Scholar 

  21. Thiedmann R., Stenzel O., Spettl A., Shearing P., Harris S., Brandon N., Schmidt V.: Stochastic simulation model for the 3D morphology of composite materials in Li-ion batteries. Comput. Mater. Sci. 50, 3365–3376 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Roland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roland, M., Kruglova, A., Gaiselmann, G. et al. Numerical simulation and comparison of a real Al–Si alloy with virtually generated alloys. Arch Appl Mech 85, 1161–1171 (2015). https://doi.org/10.1007/s00419-014-0956-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0956-5

Keywords

Navigation