Skip to main content
Log in

Numerical solution to a nonlinear, one-dimensional problem of anisotropic thermoelasticity with volume force and heat supply in a half-space: interaction of displacements

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A numerical solution is presented for a one-dimensional, coupled nonlinear wave propagation problem of thermoelasticity for an anisotropic, elastic half-space involving body force and heat supply, under a periodic in-depth displacement at the boundary. This is a generalization of a previous work by the same authors with only the in-depth displacement. The volume force and bulk heating simulate the effect of a beam of particles infiltrating the medium. No phase transition is considered, and the domain of the solution excludes any shock wave formation at breaking distance. Three interacting components of the mechanical displacement are taken into account. The numerical scheme is investigated rigorously. It is shown to exhibit unconditional stability and a correct reproduction of the process of coupled thermo-mechanical wave propagation and the coupling between the displacement components. The interplay between these two factors and the applied boundary disturbance is outlined. The results are discussed and compared with those when only the in-depth displacement is considered. The presented figures show the effects of volume force and heat supply on the distributions of the mechanical displacements and temperature inside the medium. The presence of more than one velocity of propagation of the waves due to anisotropy is put in evidence. It turns out that the effect of the transversal displacements on the in-depth displacement and on the temperature for the considered values of the different material constants becomes weaker as time grows. The different forms of the propagating waves allow, if proper measurements are carried out, to detect the presence of a force field or bulk heating in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abd-Alla A.N., Ghaleb A.F., Maugin G.A.: Harmonic wave generation in nonlinear thermoelasticity. Int. J. Eng. Sci. 32, 1103–1116 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alshati R.A., Khorsand M.: Three-dimensional nonlinear thermoelastic analysis of functionally graded cylindrical shells with piezoelectric layers by differential quadrature method. Acta Mech. 232, 2565–2590 (2012)

    Article  Google Scholar 

  3. Amirkhanov, I.V., Sarhadov, I., Ghaleb, A.F., Sweilam, N.H.: Numerical simulation of thermoelastic waves arising in materials under the action of different physical factors. In: Bulletin of PFUR. Series Mathematics, Information Sciences, Physics, N2, pp. 64–76 (2013)

  4. Andreaus U., Dell’Isola F.: On thermokinematic analysis of pipe shaping in cast ingots: a numerical simulation via FDM. Int. J. Eng. Sci. 34(12), 1349–1367 (1996)

    Article  MATH  Google Scholar 

  5. Bellman R.E.: A new method for the identification of systems. Math. Biosci. 5(1–2), 201–204 (1969)

    Article  MATH  Google Scholar 

  6. Bellman R.E., Kalaba R.E.: Quasilinearization and Nonlinear Boundary-Value Problems. American Elsevier, New-York (1965)

    MATH  Google Scholar 

  7. Bert C.W., Malik M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  8. Chirita S.: Continuous data dependence in the dynamical theory of nonlinear thermoelasticity on unbounded domains. J. Thermal Stresses 11, 57–72 (1988)

    Article  MathSciNet  Google Scholar 

  9. Cui X., Yue J.: A nonlinear iteration method for solving a two-dimensional nonlinear coupled system of parabolic and hyperbolic equations. J. Comput. Appl. Math. 234, 343–364 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cui X., Yue J., Yuan G.: Nonlinear scheme with high accuracy for nonlinear coupled parabolic-hyperbolic system. J. Comput. Appl. Math. 235, 3527–3540 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dafermos C.M., Hsiao L.: Development of singularities in solutions of the equations on nonlinear thermoelasticity. Q. Appl. Math. 44, 463–474 (1986)

    MATH  MathSciNet  Google Scholar 

  12. Elzoheiry H., Iskandar L., El-Deen Mohamedein M.Sh.: Iterative implicit schemes for the two- and three-dimensional Sine–Gordon equation. J. Comput. Appl. Math. 34, 161–170 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ghaleb A.F., Ayad M.M.: Nonlinear waves in thermo-magnetoelasticity. (I) Basic equations. Int. J. Appl. Electromagn. Mech. 9(4), 339–357 (1998)

    Google Scholar 

  14. Ghaleb A.F., Ayad M.M.: Nonlinear waves in thermo-magnetoelasticity. (II) Wave generation in a perfect electric conductor. Int. J. Appl. Electromagn. Mech. 9(4), 359–379 (1998)

    Google Scholar 

  15. Hrusa J.W., Messaoudi S.A.: On formation of singularities in one-dimensional nonlinear thermoelasticity. Arch. Rat. Mech. Anal. 3, 135–151 (1990)

    Article  MathSciNet  Google Scholar 

  16. Iskandar L.: New numerical solution of the Korteweg–de Vries equation. Appl. Numer. Math. 5, 215–221 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jain P.C., Iskandar L.: Numerical solutions of the regularized long-wave equation. Comput. Methods Appl. Mech. Eng. 20, 195–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jain, P.C., Iskandar, L., Kadalbajoo, M.K.: Iterative techniques for non-linear boundary control problems. In: Proceedings of International Conference on Optimization in Statistics, pp. 289–300. Academic Press, New York (1979)

  19. Jiang S.: Far field behavior of solutions to the equations of nonlinear 1-D thermoelasticity. Appl. Anal. 36, 25–35 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jiang S.: Numerical solution for the Cauchy problem in nonlinear 1-D thermoelasticity. Computing 44, 147–158 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jiang S.: An uncoupled numerical scheme for the equations of nonlinear one-dimensional thermoelasticity. J. Comput. Appl. Math. 34, 135–144 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jiang S.: On global smooth solutions to the one-dimensional equations of nonlinear inhomogeneous thermoelasticity. Nonlinear Anal. 20, 1245–1256 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jiang S., Racke R.: On some quasilinear hyperbolic–parabolic initial boundary value problems. Math. Methods Appl. Sci. 12, 315–319 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kalpakides V.K.: On the symmetries and similarity solutions of one-dimensional, nonlinear thermoelasticity. Int. J. Eng. Sci. 39, 1863–1879 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khalifa M.E.: Existence of almost everywhere solution for nonlinear hyperbolic-parabolic system. Appl. Math. Comput. 145, 569–577 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mahmoud, W., Ghaleb, A.F., Rawy, E.K., Hassan, H.A.Z., Mosharafa, A.: Numerical solution to a nonlinear, one-dimensional problem of thermoelasticity with volume force and heat supply in a half-space. Arch. Appl. Mech. doi:10.1007/s00419-014-0853-y (2014)

  27. Messaoudi S.A., Said-Houari B.: Exponential stability in one-dimensional nonlinear thermoelasticity with second sound. Math. Methods Appl. Sci. 28(2), 205–232 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Mitchell A.R., Griffiths D.F.: The Finite Difference Method in Partial Differential Equations. Wiley, New York (1990)

    Google Scholar 

  29. Mohyud-Din S.T., Yildirim A., Gülkanat Y.: Analytical solution of nonlinear thermoelasticity Cauchy problem. World Appl. Sci. J. 12, 2184–2188 (2011)

    Google Scholar 

  30. Munőz Rivera J.E., Barreto R.K.: Existence and exponential decay in nonlinear thermoelasticity. Nonlinear Anal. 31, 149–162 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Munőz Rivera J.E., Racke R.: Smoothing properties, decay, and global existence of solutions to nonlinear coupled systems of thermoelasticity type. SIAM J. Math. Anal. 26, 1547–1563 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  32. Munőz Rivera J.E., Qin Yuming.: Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory. Nonlinear Anal. 51, 11–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ponce G., Racke R.: Global existence of small solutions to the initial value problems for nonlinear thermoelasticity. J. Differ. Equ. 87, 70–83 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Racke R.: On the time-asymptotic behaviour of solutions in thermoelasticity. Proc. Roy. Soc. Edinb. 107A, 289–298 (1987)

    Article  MathSciNet  Google Scholar 

  35. Racke R.: Initial boundary-value problems in one-dimensional nonlinear thermoelasticity. Math. Methods Appl. Sci. 10, 517–529 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  36. Racke, R.: Initial boundary-value problems in one-dimensional nonlinear thermoelasticity. Lecture Notes in Mathematics, vol. 1357, pp. 341–358. Springer, Berlin (1988)

  37. Racke R.: Blow up in nonlinear three-dimensional thermo-elasticity. Math. Methods Appl. Sci. 12, 267–273 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Racke R., Shibata Y.: Global smooth solutions and asymptotic stability in one-dimensional nonlinear thermoelasticity. Arch. Rat. Mech. Anal. 116, 1–34 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  39. Rawy E.K., Iskandar L., Ghaleb A.F.: Numerical solution for a nonlinear, one-dimensional problem of thermoelasticity. J. Comput. Appl. Math. 100, 53–76 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rawy, E.K., Ghaleb, A.F.: Numerical solution of a nonlinear wave propagation problem of thermoelasticity for the half-space. In: Proceedings of Sixth Conference on Theoretical and Applied Mechanics, Mar 3–4, pp. 60–75. Cairo, Egypt (1999)

  41. Sadighi A., Ganji D.D.: A study on one-dimensional nonlinear thermoelasticity by Adomian decomposition method. World J. Model. Simul. 4, 19–25 (2008)

    Google Scholar 

  42. Shibata, Y.: On one-dimensional nonlinear thermoelasticity. In: Murthy, M.V., Spagnolo, S. (eds.) Nonlinear Hyperbolic Equations and Field Theory, Longman Science and Technology, Harlow, Essex, England, pp. 178–184. Wiley, New York (1992)

  43. Slemrod M.: Global existence, uniqueness, and asymptotic stability of classical smooth solutions in one-dimensional nonlinear thermoelasticity. Arch. Rat. Mech. Anal. 76, 97–133 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  44. Sweilam N.H.: Harmonic wave generation in nonlinear thermoelasticity by variational iteration method and Adomian’s method. J. Comput. Appl. Math. 207, 64–72 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  45. Sweilam N.H., Khader M.M.: Variational iteration method for one-dimensional nonlinear thermoelasticity. Chaos Solitons Fract. 32, 145–149 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Thomas J.W.: Numerical Partial Differential Equations: Finite Difference Methods (Texts in Applied Mathematics). Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  47. Wu T.Y., Liu G.R.: The generalized differential quadrature rule for initial-value differential equations. J. Sound Vib. 233(2), 195–213 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Ghaleb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, W., Ghaleb, A.F., Rawy, E.K. et al. Numerical solution to a nonlinear, one-dimensional problem of anisotropic thermoelasticity with volume force and heat supply in a half-space: interaction of displacements. Arch Appl Mech 85, 433–454 (2015). https://doi.org/10.1007/s00419-014-0921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0921-3

Keywords

Navigation