Skip to main content
Log in

Exploitation of the dissipation inequality in general relativistic continuum thermodynamics

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The balance equations of energy-momentum and spin together with Einstein’s field equations are investigated by the Liu procedure to find constraints for the constitutive equations in such a way that the Second Law is satisfied. Special cases such as spinless systems and curvature insensitive materials are shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu I.S.: Method of Lagrange multipliers for exploitationof the entropy principle. Arch. Rat. Mech. Anal. 46, 131 (1972)

    MATH  Google Scholar 

  2. Muschik W., Ehrentraut H.: An amendment to the Second Law. J. Non-Equilib. Thermodyn. 21, 175 (1996)

    Article  MATH  Google Scholar 

  3. Herrmann H., Muschik W., Rückner G.: Constitutive theory in general relativity: basic fields, state spaces, and the principle of minimal coupling. Rend. Sem. Mat. Univ. Pol. Torino, Geom., Cont. Micros., II 58, 133 (2000)

    MATH  Google Scholar 

  4. Muschik, W., v. Borzeszkowski, H.-H.: Mathisson–Papapetrou equations as conditions for the compatibility of General Relativity and Continuum Physics. Gen. Relativ. Gravit. 46, 1677 (2014), arXiv:1304.3921v1[gr-qc] 14 Apr 2013

  5. Muschik W.: Objectivity and frame indifference of acceleration-sensitive materials. J. Theor. Appl. Mech. 50, 807 (2012)

    Google Scholar 

  6. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century—A Concise Historical Perspective, Serie: Solid Mechanics and Its Applications Vol. 196, p. 268. Springer, Dordrecht (2013)

  7. Schouten J.A.: Ricci Calculus, (in particular § II.9 and III.9). Springer, Berlin (1954)

    Google Scholar 

  8. For the application of the tetrad calculus to GRT and its physical interpretation see: Treder, H.-J., v. Borzeszkowski, H.-H., van der Merwe, A., Yourgrau, W.: Fundamental Principles of General Relativity Theory, Appendix B: General Relativity Principle and General Lorentz Covariance, p. 181. Plenum Press, New York (1980)

  9. Maugin G.A., Eringen A.C.: Relativistic continua with directors. J. Math. Phys. 13, 1788 (1972)

    Article  Google Scholar 

  10. Maugin G.A., Eringen A.C.: Polarized elastic materials with electronic spin—a relativistic approach. J. Math. Phys. 13, 1777 (1972)

    Article  Google Scholar 

  11. Maugin, G.A.: On the covariant equations of the relativistic electrodynamics of continua I-IV. J. Math. Phys. 19, 1198, 1206, 1212, 1220 (1978)

  12. Muschik W.: Objectivity and frame indifference, revisited. Arch. Mech. 50, 541 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Svendsen B., Bertram A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195 (1999)

    Article  MathSciNet  Google Scholar 

  14. Bertram A., Svendsen B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Muschik W., Restuccia L.: Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example. Arch. Appl. Mech. 78, 837 (2008)

    Article  MATH  Google Scholar 

  16. see e.g.: Stephani, H.: General Relativity. An introduction to the theory of the gravitational field. Cambridge University Press, Cambridge (1982), (2nd edition 1990)

  17. Goenner H.: Einführung in die Spezielle und Allgemeine Relativitä]tstheorie, § 9.1.2. Spektrum Akademischer Verlag, Heidelberg (1996)

    Google Scholar 

  18. Muschik W.: Aspects of Non-equilibrium Thermodynamics, Six Lectures on Fundamentals and Methods, Sect. 6.2. World Scientific, Singapore (1990)

    Google Scholar 

  19. Muschik, W., Papenfuss, C., Ehrentraut, H.: Concepts of Continuum Thermodynamics, 5 Lectures on Fundamentals, Methods and Examples, Kielce University of Technology (1996)

  20. Rosenfeld, L.: Sur le tenseur D’Impulsion-Energie. Mem. Acad. R. Belg. 18, (6) (1940)

  21. Belinfante J.: On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields. Physica 7, 449 (1940)

    Article  MathSciNet  Google Scholar 

  22. Mathisson M.: Die Mechanik des Materieteilchens in der allgemeinen Relativitätstheorie. Z. Phys. 67, 826 (1931)

    Article  Google Scholar 

  23. Mathisson, M.: Neue Mechanik materieller Systeme. Acta Phys. Polon. 6, 163 (1937) (See also: Golden Oldie. Gen. Relativ. Gravit. 42, 985 (2010), with an Editorial Note by A. Trautman.)

  24. Papapetrou A.: Spinning test particles in general relativity I. Proc. R. Soc. (London) A 209, 248 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muschik W., v. Borzeszkowski H.-H.: Entropy identity and equilibrium conditions in relativistic thermodynamics. Gen. Relativ. Gravit. 41, 1285 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rückner, G.: Relativistic Constitutive Theory in Riemannian Geometry. Thesis TU Berlin (2003)

  27. Herrmann, H.: Non-equilibrium Thermodynamics in Geometrized Theories of Gravitation with Curvature and Torsion. Thesis TU Berlin (2003)

  28. Muschik W., Papenfuss C., Ehrentraut H.: A sketch of continuum thermodynamics. J. Non-Newton. Fluid Mech. 96, 255 (2001)

    Article  MATH  Google Scholar 

  29. Hermann, H., Muschik, W., Rückner, G., Restuccia, L.: Constitutive mappings and the non-objective part of material frame indifference. In: Proceedings of The International Symposium on Trends in Continuum Physics (TRECOP’04), November 17–19, Poznan, Poland, p. 128. World Scientific, Singapore (2004)

  30. Jou D., Casas-Vázquez J., Lebon G.: Extended Irreversible Thermodynamics. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  31. Müller I., Ruggeri T.: Extended Thermodynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  32. Coleman B.D., Noll W.: A mathematical foundation for thermodynamics. Arch. Rat. Mech. Anal. 54, 1 (1974)

    Article  MATH  Google Scholar 

  33. Herrmann, H.: Verträglichkeit von Liu-Verfahren und Einstein-Gleichungen. Diplomarbeit TU Berlin (1999)

  34. Herrmann, H., Muschik, W., Papenfuss, C., Rückner, G.: Exploiting the dissipation inequality in case of constrained state space variables. In: Proceedings of the International Symposium on Trends in Continuum Physics (TRECOP’98), August 17–20, 1998, Poznan, Poland, p. 156. World Scientific, Singapore (1999)

  35. Herrmann, H., Rückner, G., Muschik, W., Papenfuss, C.: Liu technique for exploiting the dissipation inequality in case of constrained state space variables. In: Ioos, G., Guès, O., Nouri, A. (eds.) Trends in Applications of Mathematics to Mechanics. Monographs and Surveys in Pure and Applied Mathematics vol. 106, p. 88. Chapman and Hall/CRC, Baca Raton (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Muschik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muschik, W., Borzeszkowski, HH.v. Exploitation of the dissipation inequality in general relativistic continuum thermodynamics. Arch Appl Mech 84, 1517–1531 (2014). https://doi.org/10.1007/s00419-014-0866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0866-6

Keywords

Navigation