Skip to main content
Log in

Modeling of strongly nonlinear effects in diatomic lattices

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A previously developed strongly nonlinear continuum model for diatomic crystals is examined using continuum limit of a discrete diatomic model. It suggested suitable expression for the forces in the discrete model; however, its continuum limit not only explains the nonlinear terms continuum model but also gives rise to some additional terms. It turns out that one of them supports bell-shaped localized variations in the diatomic material but suppresses kink-shaped variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aero E.L.: Micromechanics of a double continuum in a model of a medium with variable periodic structure. J. Eng. Math. 55, 81–95 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aero E.L., Bulygin A.N.: Strongly nonlinear theory of nanostructure formation owing to elastic and nonelastic strains in crystalline solids. Mech. Solids 42, 807–822 (2007)

    Article  Google Scholar 

  3. Porubov A.V., Aero E.L., Maugin G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E 79, 046608 (2009)

    Article  MathSciNet  Google Scholar 

  4. Sayadi M.K., Pouget J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991)

    Article  Google Scholar 

  5. Maugin G.A., Pouget J., Drouot R., Collet B.: Nonlinear Electromechanical Couplings. Wiley, UK (1992)

    Google Scholar 

  6. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, UK (1999)

  7. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola, to appear in Mechanics and Mathematics of Solids (MMS) (2013)

  8. Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Askar A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1985)

    Google Scholar 

  10. Zabusky N.J., Deem G.S.: Dynamics of nonlinear lattices. I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior. J. Comput. Phys. 2, 126–153 (1967)

    Article  Google Scholar 

  11. Kosevich A.M., Kovalev A.S.: Self-localization of vibrations in a one-dimensional anharmonic chain. Sov. Phys. JETP 40, 891–896 (1975)

    Google Scholar 

  12. Manevich L.I. et al.: Solitons in non-degenerated bistable systems. Physics-Uspekhi 37, 859–879 (1994)

    Article  Google Scholar 

  13. Kevrekidis, P.G.: Non-linear waves in lattices: past, present, future. IMA J. Appl. Math. 1–35 (2010). doi:10.1093/imamat/hxr015

  14. Sena S., Hong J., Bangb J., Avalosa E., Doneyd R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  15. Porter M.A., Daraio C., Herbold E.B., Szelengowicz I., Kevrekidis P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77, 015601R (2008)

    Article  Google Scholar 

  16. Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media, Mathematical Problems in Engineering (Open Access), Article ID 986242. doi:10.1155/2010/986242 (2010)

  17. Born, M., Kármán, Th.von : Über Schwingungen in Raumgittern. Phys. Zeitschr. 13, 297–309 (1912)

  18. Born M., Huang K.: Dynamic Theory of Crystal Lattices. Clarendon Press, Oxford (1954)

    Google Scholar 

  19. Brillouin L., Parodi M.: Wave Propagation in Periodic Structures. Dover, New York (1953)

    MATH  Google Scholar 

  20. Yajima N., Satsuma J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979)

    Article  Google Scholar 

  21. Pnevmatikos St., Remoissenet M., Flytzanis N.: Propagation of acoustic and optical solitons in nonlinear diatomic chains. J. Phys. C: Solid State Phys. 16, L305–L310 (1983)

    Article  Google Scholar 

  22. Collins M.A.: Solitons in the diatomic chain. Phys. Rev. 31, 1754–1762 (1985)

    Article  Google Scholar 

  23. Pnevmatikos St., Flytzanis N., Remoissenet M.: Soliton dynamics of nonlinear diatomic lattices. Phys. Rev. B 33, 2308–2311 (1986)

    Article  Google Scholar 

  24. Landa P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  25. Huang G.: Soliton excitations in one-dimensional diatomic lattices. Phys. Rev. B 51, 12347–12360 (1995)

    Article  Google Scholar 

  26. Porubov A.V., Andrianov I.V.: Nonlinear waves in diatomic crystals. Wave Motion 50, 1153–1160 (2013)

    Article  MathSciNet  Google Scholar 

  27. Luongo A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. 155(2), 249–271 (1992)

    Article  MATH  Google Scholar 

  28. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Luongo A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27(15), 1943–1954 (1991)

    Article  MATH  Google Scholar 

  30. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3–4), 269–291 (2003)

    Article  MATH  Google Scholar 

  31. Luongo A., Di Egidio A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84(24–25), 1596–1605 (2006)

    Article  Google Scholar 

  32. Di Egidio A., Luongo A., Paolone A.: Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int. J. Non-Linear Mech. 42(1), 88–98 (2007)

    Article  MATH  Google Scholar 

  33. dell’Isola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Carcaterra A., Akay A.: Dissipation in a finite-size bath. Phys. Rev. E 84, 011121 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Porubov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porubov, A. Modeling of strongly nonlinear effects in diatomic lattices. Arch Appl Mech 84, 1533–1538 (2014). https://doi.org/10.1007/s00419-014-0859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0859-5

Keywords

Navigation