Skip to main content
Log in

Heat transfer on a cylinder in accelerated slip flow

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The axisymmetric laminar boundary layer flow along the entire length of a semi-infinite stationary cylinder under an accelerated free-stream is investigated. Considering flow at reduced dimensions, the boundary layer equations are developed with the conventional no-slip boundary condition for tangential velocity and temperature replaced by a linear slip-jump boundary condition. Asymptotic series solutions are obtained for the heat transfer coefficient in terms of the Nusselt number. These solutions correspond to prescribed values of the momentum and temperature slip coefficients and the index of acceleration. Heat transfer at both small and large axial distances is determined in the form of series solutions; whereas at intermediate distances, exact and interpolated numerical solutions are obtained. Using these results, the heat transfer along the entire cylinder wall is evaluated in terms of the parameters of acceleration and slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grafe, T., Graham, K.: Polymeric nanofibers and nanofiber webs: a new class of nonwovens. In: International Nonwovens Technical Conference, pp. 1–13. Donaldson Co., Inc. (2002)

  2. Karniadakis G., Beskok A.: Micro Flows-Fundamentals and Simulation. Springer, New York (2002)

    MATH  Google Scholar 

  3. Ziabicki A.: Fundamentals of Fibre formation: The Science of Fiber Spinning and Drawing. Wiley, New York (1976)

    Google Scholar 

  4. Fridrikh S., Yu J., Brenner M., Rutledge G.: Controlling the fiber diameter during electrospinning. Phys. Rev. Lett. 90(14), 144502-1–144502-4 (2003)

    Article  Google Scholar 

  5. Tabelling P.: Introduction to Microfluidics. Oxford University Press, Oxford (2005)

    Google Scholar 

  6. Gad-el-Hak M.: The fluid mechanics of microdevices—the Freeman scholar lecture. J. Fluids Eng. 121(3), 5–53 (1999)

    Article  Google Scholar 

  7. Schaaf S.A., Chambre P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton, NJ (1961)

    MATH  Google Scholar 

  8. Neto C., Evans E., Bonaccurso E. et al.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68, 2859–2897 (2005)

    Article  Google Scholar 

  9. Navier C.L.M.H.: Mémoire sur les lois du mouvement des fluides. Mém. Acad. R. Sci. Inst. Fr. 6, 389–440 (1823)

    Google Scholar 

  10. Maxwell J.C.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. Lond. 170, 231–256 (1879)

    Article  MATH  Google Scholar 

  11. Crane L.J., McVeigh A.G.: Accelerated slip flow past a cylinder. Z. Angew. Math. Phys. 62(2), 365–376 (2010)

    Article  MathSciNet  Google Scholar 

  12. Crane L.J., McVeigh A.G.: Slip flow on a body of revolution. Acta Mech. 224(3), 619–629 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Smoluchowski Ritter von Smolan M.: Ueber Wärmeleitung in Verdünnten Gasen. Ann. der Phys. Chem. 64, 101–130 (1898)

    Article  Google Scholar 

  14. Matthews M.T., Hill J.M.: Micro/nano thermal boundary layer equations with slip-creep-jump boundary conditions. IMA J. Appl. Math. 72, 894–911 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Matthews M.T., Hill J.M.: Flow around nanospheres and nanocylinders. Q. J. Mech. Appl. Math. 59, 191–210 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Matthews M.T., Hill J.M.: Newtonian flow with nonlinear Navier boundary condition. Acta Mech. 191, 195–217 (2007)

    Article  MATH  Google Scholar 

  17. Matthews M.T., Hill J.M.: Nano boundary layer equation with nonlinear Navier boundary condition. J. Math. Anal. Appl. 333, 381–400 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Matthews M.T., Hill J.M.: Micro/nano thermal boundary layer equations with slip creep-jump boundary conditions. IMA J. Appl. Math. 72, 894–911 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Matthews M.T., Hill J.M.: Nanofluidics and the Navier boundary condition. Int. J. Nanotechnol. 5, 218–242 (2008)

    Article  Google Scholar 

  20. Matthews M.T., Hill J.M.: A note on the boundary layer equations with linear slip boundary condition. Appl. Math. Lett. 21, 810–818 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Crane L.J.: Heat transfer on continuous solid surfaces. Ingenieur-Archiv 43, 203–214 (1974)

    Article  MATH  Google Scholar 

  22. Crane L.J., McVeigh A.G.: Slip flow on a microcylinder. Z. Angew. Math. Phys. 61, 579–582 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Crane L.J., McVeigh A.G.: Heat transfer on a microcylinder with slip. Z. Angew. Math. Phys. 61(6), 1145–1149 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. McVeigh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crane, L.J., McVeigh, A.G. Heat transfer on a cylinder in accelerated slip flow. Arch Appl Mech 84, 899–912 (2014). https://doi.org/10.1007/s00419-014-0839-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0839-9

Keywords

Navigation