Skip to main content
Log in

Hölder stability in Type III thermoelastodynamics

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This note is concerned with the linear (and linearized) Type III thermoelastodynamic theory proposed by Green and Naghdi. We here assume that the mass density is positive and the thermal conductivity tensor is positive definite. However, we do not assume the positivity of any other tensor. In this situation, we obtain Hölder continuous dependence results on the supply terms. We also sketch how to prove the continuous dependence on the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ames K.A., Payne L.E.: Continuous dependence on initial-time geometry for a thermoelastic system with sign-indefinite elasticities. J. Math. Anal. Appl. 189, 693–714 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ames K.A., Straughan B.: Continuous dependence results for initially prestressed thermoelastic bodies. Int. J. Eng. Sci. 30, 7–13 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cimmelli V.A., dell’Isola F.: A moving boundary problem describing the growth of a droplet in its vapour. Arch. Mech. 45, 625–634 (1993)

    MathSciNet  Google Scholar 

  4. dell’Isola F.: Linear growth of a liquid droplet divided from its vapour by a “soap bubble”-like fluid interface. Int. J. Eng. Sci. 27, 1053–1067 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media. I. Classical continuum physics. Proc. R. Soc. Lond. A 448, 335–356, 357–377, 379–388 (1995)

    Google Scholar 

  8. Iesan D.: On the theory of thermoelasticity without energy dissipation. J. Therm. Stress. 21, 295–307 (1998)

    Article  MathSciNet  Google Scholar 

  9. Iesan D.: Thermopiezoelectricity without energy dissipation. Proc. R. Soc. Lond. A 464, 631–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Iesan D., Quintanilla R.: On the thermoelastic bodies with inner structure and microtemperatures. J. Math. Anal. Appl. 354, 12–23 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. John F.: Continuous dependence on data for solutions of partial differential equations with a prescribed bound. Commun. Pure Appl. Math. 13, 551–585 (1960)

    Article  MATH  Google Scholar 

  12. Knops R.J., Payne L.E.: Improved estimates for continuous data dependence in linear elastodynamics. Math. Proc. Cambr. Philosoph. Soc. 103, 535–559 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lazzari B., Nibbi R.: On the exponential decay in thermoelasticity without energy dissipation and of type III in presence of an absorbing boundary. J. Math. Anal. Appl. 338, 317–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leseduarte M.C., Magaña A., Quintanilla R.: On the time decay of solutions in porous-thermo-elasticity of type II. Discret. Continu. Dyn. Syst. Ser. B 13, 375–391 (2010)

    Article  MATH  Google Scholar 

  15. Leseduarte M.C., Quintanilla R.: On uniqueness and continuous dependence in type III thermoelasticity. J. Math. Anal. Appl. 395, 429–436 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu Z., Quintanilla R.: Analiticity of solutions in the type III thermoelastic plates. IMA J. Appl. Math. 75, 356–365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu Z., Quintanilla R.: Energy decay rates of mixed type II and type III thermoelastic system. Discret. Continu. Dyn. Syst. Ser. B 14, 1433–1444 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Y., Lin C.: Phragmén–Lindelöf alternative and continuous dependence-type results for the thermoelasticity of type III. Appl. Anal.: Int. J. 83, 431–449 (2008)

    Article  Google Scholar 

  19. Messaoudi S.A., Soufyane A.: Boundary stabilization of memory type in thermoelasticity of type III. Appl. Anal. 87, 13–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Puri P., Jordan P.M.: On the propagation of plane waves in type-III thermoelastic media. Proc. R. Soc. Lond. A 460, 3203–3221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Qin Y., Deng S., Huang L., Ma Z., Su X.: Global existence for the three-dimensional thermoelastic equations of Type II. Q. Appl. Math. 68, 333–348 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Quintanilla R.: On the spatial behaviour in thermoelasticity without energy dissipation. J. Therm. Stress. 21, 213–224 (1999)

    Article  MathSciNet  Google Scholar 

  23. Quintanilla R.: Damping of end effects in a thermoelastic theory. Appl. Math. Lett. 14, 137–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quintanilla R.: Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discret. Continu. Dyn. Syst. Ser. B 1, 463–470 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Quintanilla R.: Some remarks on growth and uniqueness in thermoelasticity. IJMMS 2003(10), 617–623 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Quintanilla R.: Convergence and structural stability in thermoelasticity. Appl. Math. Comp. 135, 287–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Quintanilla R.: Impossibility of localization in linear thermoelasticity. Proc. R. Soc. Lond. A 463, 3311–3322 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Quintanilla R., Racke R.: Stability in thermoelasticity of type III. Discret. Continu. Dyn. Syst. Ser. B 3, 383–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quintanilla R., Straughan B.: Growth and uniqueness in thermoelasticity. Proc. R. Soc. Lond. A 456, 1419–1429 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Quintanilla R., Straughan B.: A note on discontinuity waves in type III thermoelasticity. Proc. R. Soc. Lond. A 460, 1169–1175 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quintanilla R., Straughan B.: Energy bounds for some non-standard problems in thermoelasticity. Proc. R. Soc. Lond. A 461, 1147–1162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rionero S., Chirita S.: The Lagrange identity method in linear thermoelasticity. Int. J. Eng. Sci. 25, 935–947 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wilkes N.S.: Continuous dependence and instability in linear thermoelasticity. SIAM J. Math. Anal. 11, 292–299 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang L., Wang Y.G.: Well-posedness and decay estimates for Cauchy problems of linear thermoelastic systems of type III in 3-D. Indiana Univ. Math. J. 55, 1333–1361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Quintanilla.

Additional information

To G. A. Maugin in his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leseduarte, M.C., Quintanilla, R. Hölder stability in Type III thermoelastodynamics. Arch Appl Mech 84, 1465–1476 (2014). https://doi.org/10.1007/s00419-014-0827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0827-0

Keywords

Navigation