Skip to main content
Log in

Chemosensory epithelial cells in the urethra: sentinels of the urinary tract

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

A peculiar cell type of the respiratory and gastrointestinal epithelia, originally termed “brush cell” or “tuft cell” by electron microscopists because of its apical tuft of microvilli, utilizes the canonical bitter taste transduction cascade known from oropharyngeal taste buds to detect potential hazardous compounds, e.g. bacterial products. Upon stimulation, this cell initiates protective reflexes and local inflammatory responses through release of acetylcholine and chemokines. Guided by the understanding of these cells as sentinels, they have been newly discovered at previously unrecognized anatomical locations, including the urethra. Solitary cholinergic urethral cells express canonical taste receptors and are polymodal chemosensors for certain bitter substances, glutamate (umami) and uropathogenic Escherichia coli. Intraurethral bitter stimulation triggers cholinergic reflex activation of bladder detrusor activity, which is interpreted as cleaning flushing of the urethra. The currently known scenario suggests the presence of at least two more urethral chemosensory cell types: non-cholinergic brush cells and neuroendocrine serotonergic cells. The potential implications are enormous and far reaching, as these cells might be involved in monitoring and preventing ascending urinary tract infection and triggering of inappropriate detrusor activity. However, although appealing, this is still highly speculative, since the actual number of distinct chemosensory cell types needs to be finally clarified, as well as their embryological origin, developmental dynamics, receptor equipment, modes of signalling to adjacent nerve fibres and other cells, repertoire of chemo- and cytokines, involvement in pathogenesis of diseases and many other aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702

    Article  CAS  PubMed  Google Scholar 

  • Amorino GP, Parsons SJ (2004) Neuroendocrine cells in prostate cancer. Crit Rev Eukaryot Gene Expr 14(4):287–300. doi:10.1615/CritRevEukaryotGeneExpr.v14.i4.40

    Article  CAS  PubMed  Google Scholar 

  • Aubron C, Huet O, Ricome S, Borderie D, Pussard E, Leblanc PE, Bouvet O, Vicaut E, Denamur E, Duranteau J (2012) Changes in urine composition after trauma facilitate bacterial growth. BMC Infect Dis 12:330. doi:10.1186/1471-2334-12-330

    Article  PubMed  PubMed Central  Google Scholar 

  • Aumüller G, Renneberg H, Leonhardt M, Lilja H, Abrahamsson PA (1999) Localization of protein gene product 9.5 immunoreactivity in derivatives of the human Wolffian duct and in prostate cancer. Prostate 38(4):261–267

    Article  PubMed  Google Scholar 

  • Aumüller G, Doll A, Wennemuth G, Dizeyi N, Abrahamsson PA, Wilhelm B (2012) Regional distribution of neuroendocrine cells in the urogenital duct system of the male rat. Prostate 72(3):326–337. doi:10.1002/pros.21437

    Article  CAS  PubMed  Google Scholar 

  • Bachmanov AA, Beauchamp GK (2007) Taste receptor genes. Annu Rev Nutr 27:389–414. doi:10.1146/annurev.nutr.26.061505.111329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breer H, Eberle J, Frick C, Haid D, Widmayer P (2012) Gastrointestinal chemosensation: chemosensory cells in the alimentary tract. Histochem Cell Biol 138(1):13–24. doi:10.1007/s00418-012-0954-z

    Article  CAS  PubMed  Google Scholar 

  • Caicedo A, Kim KN, Roper SD (2002) Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544(Pt 2):501–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casanova S, Carrado F, Vignoli G (1974) Endocrine-like cells in the epithelium of the human male urethra. J Submicrol Cytol 6:435–438

    Google Scholar 

  • Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJ (2000) T2Rs function as bitter taste receptors. Cell 100(6):703–711

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari N, Roper SD (2010) The cell biology of taste. J Cell Biol 190(3):285–296. doi:10.1083/jcb.201003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chromek M (2015) The role of the antimicrobial peptide cathelicidin in renal diseases. Pediatr Nephrol 30(8):1225–1232. doi:10.1007/s00467-014-2895-3

    Article  PubMed  Google Scholar 

  • Czaja K, Sienkiewicz W, Vittoria A, Costagliola A, Cecio A (1996) Neuroendocrine cells in the female urogenital tract of the pig, and their immunohistochemical characterization. Acta Anat (Basel) 157(1):11–19

    Article  CAS  Google Scholar 

  • Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, Zou S, Jiang P, Ninomiya Y, Margolskee RF (2003) Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301(5634):850–853. doi:10.1126/science.1087155

    Article  CAS  PubMed  Google Scholar 

  • Deckmann K, Filipski K, Krasteva-Christ G, Fronius M, Althaus M, Rafiq A, Papadakis T, Renno L, Jurastow I, Wessels L, Wolff M, Schütz B, Weihe E, Chubanov V, Gudermann T, Klein J, Bschleipfer T, Kummer W (2014) Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc Natl Acad Sci USA 111(22):8287–8292. doi:10.1073/pnas.1402436111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deckmann K, Krasteva-Christ G, Rafiq A, Herden C, Wichmann J, Knauf S, Nassenstein C, Grevelding CG, Dorresteijn A, Chubanov V, Gudermann T, Bschleipfer T, Kummer W (2015) Cholinergic urethral brush cells are widespread throughout placental mammals. Int Immunopharmacol 29(1):51–56. doi:10.1016/j.intimp.2015.05.038

    Article  CAS  PubMed  Google Scholar 

  • di Sant’Agnese PA, De Mesy Jensen KL (1984) Endocrine-paracrine cells of the prostate and prostatic urethra: an ultrastructural study. Hum Pathol 15(11):1034–1041

    Article  PubMed  Google Scholar 

  • di Sant’Agnese PA, de Mesy Jensen KL (1987) Endocrine-paracrine (APUD) cells of the human female urethra and paraurethral ducts. J Urol 137(6):1250–1254

    PubMed  Google Scholar 

  • Dixon JS, Gosling JA, Ramsdale DR (1973) Urethral chromaffin cells. A light and electron microscopic study. Z Zellforsch Mikrosk Anat 138(3):397–406

    Article  CAS  PubMed  Google Scholar 

  • Dorff TB, Liu SV, Xiong S, Cai J, Hawes D, Pinski J (2011) Ethnic differences in neuroendocrine expression in prostate cancer tissue. Anticancer Res 31(11):3897–3901

    PubMed  Google Scholar 

  • Fan WJ, Li YT, Chen JJ, Chen SC, Lin YS, Kou YR, Peng CW (2013) Sexually dimorphic urethral activity in response to pharmacological activation of 5-HT1A receptors in the rat. Am J Physiol Renal Physiol 305(9):F1332–F1342. doi:10.1152/ajprenal.00261.2013

    Article  CAS  PubMed  Google Scholar 

  • Fetissof F, Dubois MP, Arbeille-Brassart B, Lanson Y, Boivin F, Jobard P (1983) Endocrine cells in the prostate gland, urothelium and Brenner tumors. Immunohistological and ultrastructural studies. Virchows Arch B Cell Pathol Incl Mol Pathol 42(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Feyrter F (1951a) Über das urogenitale Helle-Zellen-System des Menschen. Z Mikrosk Anat Forsch 57(3):324–344

    CAS  PubMed  Google Scholar 

  • Feyrter F (1951b) Zur Pathologie des urogenitalen Helle-Zellen-Systems. Virchows Arch Pathol Anat Physiol Klin Med 320(6):564–576

    Article  CAS  PubMed  Google Scholar 

  • Finger TE, Kinnamon SC (2011) Taste isn’t just for taste buds anymore. F1000 Biol Rep 3:20. doi:10.3410/B3-20

    Article  PubMed  PubMed Central  Google Scholar 

  • Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100(15):8981–8986. doi:10.1073/pnas.1531172100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finger TE, Danilova V, Barrows J, Bartel DL, Vigers AJ, Stone L, Hellekant G, Kinnamon SC (2005) ATP signaling is crucial for communication from taste buds to gustatory nerves. Science 310(5753):1495–1499. doi:10.1126/science.1118435

    Article  CAS  PubMed  Google Scholar 

  • Foxman B (2010) The epidemiology of urinary tract infection. Nat Rev Urol 7(12):653–660. doi:10.1038/nrurol.2010.190

    Article  PubMed  Google Scholar 

  • Fujita T, Kanno T, Kobayashi S (1988) The paraneuron. Springer, Heidelberg

    Book  Google Scholar 

  • Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 14; 529(7585):226–230. doi: 10.1038/nature16527

  • Gilbertson TA, Boughter JD Jr, Zhang H, Smith DV (2001) Distribution of gustatory sensitivities in rat taste cells: whole-cell responses to apical chemical stimulation. J Neurosci 21(13):4931–4941

    CAS  PubMed  Google Scholar 

  • Glendinning JI, Bloom LD, Onishi M, Zheng KH, Damak S, Margolskee RF, Spector AC (2005) Contribution of alpha-gustducin to taste-guided licking responses of mice. Chem Senses 30(4):299–316. doi:10.1093/chemse/bji025

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Karp PH, Brody SL, Pierce RA, Welsh MJ, Holtzman MJ, Ben-Shahar Y (2014) Chemosensory functions for pulmonary neuroendocrine cells. Am J Respir Cell Mol Biol 50(3):637–646. doi:10.1165/rcmb.2013-0199OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulbransen BD, Clapp TR, Finger TE, Kinnamon SC (2008) Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J Neurophysiol 99(6):2929–2937. doi:10.1152/jn.00066.2008

    Article  PubMed  PubMed Central  Google Scholar 

  • Hakanson R, Larsson LI, Sjoberg NO, Sundler F (1974) Amine-producing endocrine-like cells in the epithelium of urethra and prostate of the guinea-pig. A chemical, fluorescence histochemical, and electron microscopic study. Histochemie 38(3):259–270

    Article  CAS  PubMed  Google Scholar 

  • Hansen A, Finger TE (2008) Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci 9:115. doi:10.1186/1471-2202-9-115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanyu S, Iwanaga T, Kano K, Fujita T (1987) Distribution of serotonin-immunoreactive paraneurons in the lower urinary tract of dogs. Am J Anat 180(4):349–356. doi:10.1002/aja.1001800405

    Article  CAS  PubMed  Google Scholar 

  • Heinrich E, Trojan L, Friedrich D, Voss M, Weiss C, Michel MS, Grobholz R (2011) Neuroendocrine tumor cells in prostate cancer: evaluation of the neurosecretory products serotonin, bombesin, and gastrin—impact on angiogenesis and clinical follow-up. Prostate 71(16):1752–1758. doi:10.1002/pros.21392

    Article  CAS  PubMed  Google Scholar 

  • Höfer D, Drenckhahn D (1992) Identification of brush cells in the alimentary and respiratory system by antibodies to villin and fimbrin. Histochemistry 98(4):237–242

    Article  PubMed  Google Scholar 

  • Höfer D, Drenckhahn D (1996) Cytoskeletal markers allowing discrimination between brush cells and other epithelial cells of the gut including enteroendocrine cells. Histochem Cell Biol 105(5):405–412

    Article  PubMed  Google Scholar 

  • Höfer D, Püschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93(13):6631–6634

    Article  PubMed  PubMed Central  Google Scholar 

  • Holstein AF, Davidoff MS, Breucker H, Countouris N, Orlandini G (1991) Different epithelia in the distal human male urethra. Cell Tissue Res 264(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV, Gallini CA, Redding K, Margolskee RF, Osborne LC, Artis D, Garrett WS (2016) Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351(6279):1329–1333. doi:10.1126/science.aaf1648

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Maruyama Y, Dvoryanchikov G, Pereira E, Chaudhari N, Roper SD (2007) The role of pannexin 1 hemichannels in ATP release and cell-cell communication in mouse taste buds. Proc Natl Acad Sci USA 104(15):6436–6441. doi:10.1073/pnas.0611280104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isomaki AM (1973) A new cell type (tuft cell) in the gastrointestinal mucosa of the rat. A transmission and scanning electron microscopic study. Acta Pathol Microbiol Scand A: Suppl 240:1–35

    Google Scholar 

  • Kim MR, Kusakabe Y, Miura H, Shindo Y, Ninomiya Y, Hino A (2003) Regional expression patterns of taste receptors and gustducin in the mouse tongue. Biochem Biophys Res Commun 312(2):500–506

    Article  CAS  PubMed  Google Scholar 

  • Krasteva G, Kummer W (2012) “Tasting” the airway lining fluid. Histochem Cell Biol 138(3):365–383. doi:10.1007/s00418-012-0993-5

    Article  CAS  PubMed  Google Scholar 

  • Krasteva G, Canning BJ, Hartmann P, Veres TZ, Papadakis T, Mühlfeld C, Schliecker K, Tallini YN, Braun A, Hackstein H, Baal N, Weihe E, Schütz B, Kotlikoff M, Ibanez-Tallon I, Kummer W (2011) Cholinergic chemosensory cells in the trachea regulate breathing. Proc Natl Acad Sci USA 108(23):9478–9483. doi:10.1073/pnas.1019418108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krasteva G, Canning BJ, Papadakis T, Kummer W (2012a) Cholinergic brush cells in the trachea mediate respiratory responses to quorum sensing molecules. Life Sci 91(21–22):992–996. doi:10.1016/j.lfs.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  • Krasteva G, Hartmann P, Papadakis T, Bodenbenner M, Wessels L, Weihe E, Schütz B, Langheinrich AC, Chubanov V, Gudermann T, Ibanez-Tallon I, Kummer W (2012b) Cholinergic chemosensory cells in the auditory tube. Histochem Cell Biol 137(4):483–497. doi:10.1007/s00418-012-0911-x

    Article  CAS  PubMed  Google Scholar 

  • Kunin CM, Evans C, Bartholomew D, Bates DG (2002) The antimicrobial defense mechanism of the female urethra: a reassessment. J Urol 168(2):413–419

    Article  PubMed  Google Scholar 

  • Latorre R, Huynh J, Mazzoni M, Gupta A, Bonora E, Clavenzani P, Chang L, Mayer EA, De Giorgio R, Sternini C (2016) Expression of the bitter taste receptor, T2R38, in enteroendocrine cells of the colonic mucosa of overweight/obese vs. lean subjects. PLoS One 11(2):e0147468. doi:10.1371/journal.pone.0147468.eCollection2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RJ, Cohen NA (2014) Sinonasal solitary chemosensory cells “taste” the upper respiratory environment to regulate innate immunity. Am J Rhinol Allergy 28(5):366–373. doi:10.2500/ajra.2014.28.4077

    Article  PubMed  Google Scholar 

  • Lee RJ, Xiong G, Kofonow JM, Chen B, Lysenko A, Jiang P, Abraham V, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Beauchamp GK, Doulias PT, Ischiropoulos H, Kreindler JL, Reed DR, Cohen NA (2012) T2R38 taste receptor polymorphisms underlie susceptibility to upper respiratory infection. J Clin Invest 122(11):4145–4159. doi:10.1172/JCI64240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RJ, Kofonow JM, Rosen PL, Siebert AP, Chen B, Doghramji L, Xiong G, Adappa ND, Palmer JN, Kennedy DW, Kreindler JL, Margolskee RF, Cohen NA (2014) Bitter and sweet taste receptors regulate human upper respiratory innate immunity. J Clin Invest 124(3):1393–1405. doi:10.1172/JCI72094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99(3):1451–1460. doi:10.1152/jn.01195.2007

    Article  CAS  PubMed  Google Scholar 

  • Lindemann B (2001) Receptors and transduction in taste. Nature 413(6852):219–225. doi:10.1038/35093032

    Article  CAS  PubMed  Google Scholar 

  • Luciano L, Reale E (1979) A new morphological aspect of the brush cells of the mouse gallbladder epithelium. Cell Tissue Res 201(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Luciano L, Reale E (1990) Brush cells of the mouse gallbladder. A correlative light- and electron-microscopical study. Cell Tissue Res 262(2):339–349

    Article  CAS  PubMed  Google Scholar 

  • Luciano L, Castellucci M, Reale E (1981) The brush cells of the common bile duct of the rat. This section, freeze-fracture and scanning electron microscopy. Cell Tissue Res 218(2):403–420

    Article  CAS  PubMed  Google Scholar 

  • Maddison DR, Schulz KS (2007) (eds) The tree of life web project. http://tolweb.org

  • Maillet EL, Cui M, Jiang P, Mezei M, Hecht E, Quijada J, Margolskee RF, Osman R, Max M (2015) Characterization of the binding site of aspartame in the human sweet taste receptor. Chem Senses 40(8):577–586. doi:10.1093/chemse/bjv045

    Article  PubMed  PubMed Central  Google Scholar 

  • Margolskee RF, Dyer J, Kokrashvili Z, Salmon KS, Ilegems E, Daly K, Maillet EL, Ninomiya Y, Mosinger B, Shirazi-Beechey SP (2007) T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc Natl Acad Sci USA 104(38):15075–15080. doi:10.1073/pnas.0706678104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsunami H, Montmayeur JP, Buck LB (2000) A family of candidate taste receptors in human and mouse. Nature 404(6778):601–604. doi:10.1038/35007072

    Article  CAS  PubMed  Google Scholar 

  • Mbaki Y, Ramage AG (2008) Investigation of the role of 5-HT2 receptor subtypes in the control of the bladder and the urethra in the anaesthetized female rat. Br J Pharmacol 155(3):343–356. doi:10.1038/bjp.2008.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin SK, McKinnon PJ, Margolskee RF (1992) Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357(6379):563–569. doi:10.1038/357563a0

    Article  CAS  PubMed  Google Scholar 

  • Meyer-Gerspach AC, Wolnerhanssen B, Beglinger C (2014) Gut sweet taste receptors and their role in metabolism. Front Horm Res 42:123–133. doi:10.1159/000358321

    Article  CAS  PubMed  Google Scholar 

  • Monteiro-Riviere NA, Popp JA (1984) Ultrastructural characterization of the nasal respiratory epithelium in the rat. Am J Anat 169(1):31–43. doi:10.1002/aja.1001690103

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    Article  CAS  PubMed  Google Scholar 

  • Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS (2002) An amino-acid taste receptor. Nature 416(6877):199–202. doi:10.1038/nature726

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Krosnowski K, Zhang L, Bekkerman M, Lin W (2010) Chemoreception regulates chemical access to mouse vomeronasal organ: role of solitary chemosensory cells. PLoS One 5(7):e11924. doi:10.1371/journal.pone.0011924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogura T, Szebenyi SA, Krosnowski K, Sathyanesan A, Jackson J, Lin W (2011) Cholinergic microvillous cells in the mouse main olfactory epithelium and effect of acetylcholine on olfactory sensory neurons and supporting cells. J Neurophysiol 106(3):1274–1287. doi:10.1152/jn.00186.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmoto M, Matsumoto I, Yasuoka A, Yoshihara Y, Abe K (2008) Genetic tracing of the gustatory and trigeminal neural pathways originating from T1R3-expressing taste receptor cells and solitary chemoreceptor cells. Mol Cell Neurosci 38(4):505–517. doi:10.1016/j.mcn.2008.04.011

    Article  CAS  PubMed  Google Scholar 

  • Parr MB, Ren HP, Russell LD, Prins GS, Parr EL (1992) Urethral glands of the male mouse contain secretory component and immunoglobulin A plasma cells and are targets of testosterone. Biol Reprod 47(6):1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Pearson MM, Yep A, Smith SN, Mobley HL (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79(7):2619–2631. doi:10.1128/IAI.05152-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polisetti S, Baig NF, Morales-Soto N, Shrout JD, Bohn PW (2016) Spatial mapping of pyocyanin in pseudomonas aeruginosa bacterial communities using surface enhanced raman scattering. Appl Spectrosc. doi:10.1177/0003702816654167

    PubMed  Google Scholar 

  • Porter E, Yang H, Yavagal S, Preza GC, Murillo O, Lima H, Greene S, Mahoozi L, Klein-Patel M, Diamond G, Gulati S, Ganz T, Rice PA, Quayle AJ (2005) Distinct defensin profiles in Neisseria gonorrhoeae and Chlamydia trachomatis urethritis reveal novel epithelial cell-neutrophil interactions. Infect Immun 73(8):4823–4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodin J, Dalhamn T (1956) Electron microscopy of the tracheal ciliated mucosa in rat. Z Zellforsch Mikrosk Anat 44(4):345–412

    Article  CAS  PubMed  Google Scholar 

  • Roper SD (2013) Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol 24(1):71–79. doi:10.1016/j.semcdb.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  • Roper SD (2015) The taste of table salt. Pflugers Arch 467(3):457–463. doi:10.1007/s00424-014-1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders CJ, Christensen M, Finger TE, Tizzano M (2014) Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc Natl Acad Sci USA 111(16):6075–6080. doi:10.1073/pnas.1402251111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sbarbati A, Osculati F (2006) Allelochemical communication in vertebrates: kairomones, allomones and synomones. Cells Tissues Organs 183(4):206–219. doi:10.1159/000096511

    Article  CAS  PubMed  Google Scholar 

  • Schütz B, Jurastow I, Bader S, Ringer C, von Engelhardt J, Chubanov V, Gudermann T, Diener M, Kummer W, Krasteva-Christ G, Weihe E (2015) Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front Physiol 6:87. doi:10.3389/fphys.2015.00087

    PubMed  PubMed Central  Google Scholar 

  • Shum WW, Da Silva N, McKee M, Smith PJ, Brown D, Breton S (2008) Transepithelial projections from basal cells are luminal sensors in pseudostratified epithelia. Cell 135(6):1108–1117. doi:10.1016/j.cell.2008.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczyrba J, Niesen A, Wagner M, Wandernoth P, Aumüller G., Wennemuth G (2014) A subset of neuroendocrine cells of the prostate derives from the neural crest. 109th Annual Meeting of the Anatomische Gesellschaft, Salzburg. doi:10.13140/2.1.3502.9765

  • Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 495(7440):223–226. doi:10.1038/nature11906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tizzano M, Dvoryanchikov G, Barrows JK, Kim S, Chaudhari N, Finger TE (2008) Expression of Galpha14 in sweet-transducing taste cells of the posterior tongue. BMC Neurosci 9:110. doi:10.1186/1471-2202-9-110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107(7):3210–3215. doi:10.1073/pnas.0911934107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomchik SM, Berg S, Kim JW, Chaudhari N, Roper SD (2007) Breadth of tuning and taste coding in mammalian taste buds. J Neurosci 27(40):10840–10848. doi:10.1523/JNEUROSCI.1863-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbeuch A, Anderson CB, Kinnamon SC (2015) Mice lacking pannexin 1 release ATP and respond normally to all taste qualities. Chem Senses 40(7):461–467. doi:10.1093/chemse/bjv034

    Article  PubMed  PubMed Central  Google Scholar 

  • Vittoria A, Cocca T, La Mura E, Cecio A (1992) Immunocytochemistry of paraneurons in the female urethra of the horse, cattle, sheep, and pig. Anat Rec 233(1):18–24. doi:10.1002/ar.1092330104

    Article  CAS  PubMed  Google Scholar 

  • von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529(7585):221–225. doi:10.1038/nature16161

    Article  CAS  Google Scholar 

  • Wagenlehner FM, Cek M, Naber KG, Kiyota H, Bjerklund-Johansen TE (2012) Epidemiology, treatment and prevention of healthcare-associated urinary tract infections. World J Urol 30(1):59–67. doi:10.1007/s00345-011-0757-1

    Article  CAS  PubMed  Google Scholar 

  • Weyrauch KD, Schnorr B (1976) Die Feinstruktur des Epithels des Ductus pancreaticus major des Schafes. Acta Anat 96:232–247

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Islam S, Wood TK, Huang Z (2015) An integrated modeling and experimental approach to study the influence of environmental nutrients on biofilm formation of pseudomonas aeruginosa. Biomed Res Int. 2015:506782. doi:10.1155/2015/506782

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3):293–301

    Article  CAS  PubMed  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115(3):255–266

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Our studies reviewed here were supported by the State of Hesse (LOEWE Research Focus Non-neuronal Cholinergic Systems).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Kummer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This review is dedicated to Detlev Drenckhahn who provided first experimental evidence for a chemosensory function of brush cells by discovering their expression of the taste-specific G-protein α-gustducin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deckmann, K., Kummer, W. Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochem Cell Biol 146, 673–683 (2016). https://doi.org/10.1007/s00418-016-1504-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1504-x

Keywords

Navigation