Skip to main content
Log in

Characterisation of cochlear inflammation in mice following acute and chronic noise exposure

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Oxidative stress has been established as the key mechanism of the cochlear damage underlying noise-induced hearing loss, however, emerging evidence suggests that cochlear inflammation may also be a major contributor. This study aimed to improve our understanding of the cochlear inflammatory response associated with acute and chronic noise exposure. C57BL/6 mice were exposed to acute traumatic noise (100 dBSPL, 8–16 kHz for 24 h) and their cochleae collected at various intervals thereafter, up to 7 days. Using quantitative RT-PCR and immunohistochemistry, changes in expression levels of proinflammatory cytokines (TNF-α, IL-1β), chemokines (CCL2) and cell adhesion molecules (ICAM-1) were studied. All gene transcripts displayed similar dynamics of expression, with an early upregulation at 6 h post-exposure, followed by a second peak at 7 days. ICAM-1 immunoexpression increased significantly in the inferior region of the spiral ligament, peaking 24 h post-exposure. The early expression of proinflammatory mediators likely mediates the recruitment and extravasation of inflammatory cells into the noise-exposed cochlea. The occurrence of the latter expression peak is not clear, but it may be associated with reparative processes initiated in response to cochlear damage. Chronic exposure to moderate noise (90 dBSPL, 8–16 kHz, 2 h/day, up to 4 weeks) also elicited an inflammatory response, reaching a maximum after 2 weeks, suggesting that cochlear damage and hearing loss associated with chronic environmental noise exposure may be linked to inflammatory processes in the cochlea. This study thus provides further insight into the dynamics of the cochlear inflammatory response induced by exposure to acute and chronic noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCL2:

Chemokine (C–C motif) ligand 2

ICAM-1:

Intercellular adhesion molecule-1

IL-1β:

Interleukin-1beta

IL-6:

Interleukin-6

NIHL:

Noise-induced hearing loss

TNF-α:

Tumour necrosis factor alpha

References

  • Arpornchayanon W, Canis M, Ihler F, Settevendemie C, Strieth S (2013) TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo. Int J Audiol 52:545–552. doi:10.3109/14992027.2013.790564

    Article  PubMed  Google Scholar 

  • Backhouse S, Coleman B, Shepherd R (2008) Surgical access to the mammalian cochlea for cell-based therapies. Exp Neurol 214:193–200. doi:10.1016/j.expneurol.2008.08.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Cayé-Thomasen P, Worsøe L, Brandt CT, Miyazaki H, Østergaard C, Frimodt-Møller N, Thomsen J (2009) Routes, dynamics, and correlates of cochlear inflammation in terminal and recovering experimental meningitis. Laryngoscope 119:1560–1570

    Article  PubMed  Google Scholar 

  • Discolo CM, Keasler JR, Hirose K (2004) Inflammatory cells in the mouse cochlea after acoustic trauma. In: 27th Association for research in otolaryngology (ARO) MidWinter Meeting, Daytona Beach, Florida, USA, Noise injury: mechanisms. 23 Feb 2004

  • Fujioka M, Kanzaki S, Okano HJ, Masuda M, Ogawa K, Okano H (2006) Proinflammatory cytokines expression in noise-induced damaged cochlea. J Neurosci Res 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Gloddek B, Lassmann S, Gloddek J, Arnold W (1999) Role of S-100β as potential autoantigen in an autoimmune disease of the inner ear. J Neuroimmunol 101:39–46

    Article  CAS  PubMed  Google Scholar 

  • Hirose K, Keasler JR (2004) Proinflammatory cytokine and chemokine expression in the noise-exposed murine cochlea. In: 27th Association for research in otolaryngology (ARO) MidWinter Meeting, Daytona Beach, Florida, USA, Noise injury: mechanisms. 23 Feb 2004

  • Hirose K, Discolo CM, Keasler JR, Ransohoff R (2005) Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J Comp Neurol 489:180–194

    Article  PubMed  Google Scholar 

  • Hirose Y, Tabuchi K, Oikawa K, Murashita H, Sakai S, Hara A (2007) The effects of the glucocorticoid receptor antagonist RU486 and phospholipase A2 inhibitor quinacrine on acoustic injury of the mouse cochlea. Neurosci Lett 413:63–67. doi:10.1016/j.neulet.2006.11.029

    Article  CAS  PubMed  Google Scholar 

  • Ichimiya I, Yoshida K, Hirano T, Suzuki M, Mogi G (2000) Significance of spiral ligament fibrocytes with cochlear inflammation. Int J Pediatr Otorhinolaryngol 56:45–51

    Article  CAS  PubMed  Google Scholar 

  • Ichimiya I, Yoshida K, Suzuki M, Mogi G (2003) Expression of adhesion molecules by cultured spiral ligament fibrocytes stimulated with proinflammatory cytokines. Ann Otol Rhinol Laryngol 112:722–728

    Article  PubMed  Google Scholar 

  • Jo J-H, Kwon M-S, Choi H-O, Oh H-M, Kim H-J, Jun C-D (2010a) Recycling and LFA-1-dependent trafficking of ICAM-1 to the immunological synapse. J Cell Biochem 111:1125–1137. doi:10.1002/jcb.22798

    Article  CAS  PubMed  Google Scholar 

  • Jo MH, Kim CJ, Koh SH, Nam GS, Jeong HM, Lee JH, Lee SH (2010b) Expression and distribution of tumor necrosis factor-alpha in mice cochlea exposed to noise. Korean J Otorhinolaryngol-Head Neck Surg 53:527–533. doi:10.3342/kjorl-hns.2010.53.9.527

    Article  Google Scholar 

  • Kaur T, Mukherjea D, Sheehan K, Jajoo S, Rybak LP, Ramkumar V (2011) Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis 2:e180. doi:10.1038/cddis.2011.63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawauchi H, Demaria TF, Lim DJ (1988) Endotoxin permeability through the round window. Acta Otolaryngol 105:100–115. doi:10.3109/00016488809138892

    Article  Google Scholar 

  • Keithley EM, Wang X, Barkdull GC (2008) Tumor necrosis factor α can induce recruitment of inflammatory cells to the cochlea. Otol Neurotol 29:854–859

    Article  PubMed  Google Scholar 

  • Kel GE, Tan J, Eastwood HT, Wongprasartsuk S, O’Leary SJ (2013) Early cochlear response and ICAM-1 expression to cochlear implantation. Otol Neurotol 7:1595–1602. doi:10.1097/MAO.0b013e31828f4929

    Article  Google Scholar 

  • Kirkegaard M, Murai N, Risling M, Suneson A, Jarlebark L, Ulfendahl M (2006) Differential gene expression in the rat cochlea after exposure to impulse noise. Neuroscience 142:425–435

    Article  CAS  PubMed  Google Scholar 

  • Koo J-W et al (2015) Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity. Sci Transl Med 7:298ra118. doi:10.1126/scitranslmed.aac5546

    Article  PubMed  Google Scholar 

  • Ladrech S, Wang J, Simonneau L, Puel J-L, Lenoir M (2007) Macrophage contribution to the response of the rat organ of Corti to amikacin. J Neurosci Res 85:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1:1–10. doi:10.1101/cshperspect.a001651

    Article  Google Scholar 

  • Linas SL, Whittenburg D, Parsons PE, Repine JE (1995) Ischemia increases neutrophil retention and worsens acute renal failure: role of oxygen metabolites and ICAM-1. Kidney Int 48:1584–1591

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Lo SK, Janakidevi K, Lai L, Malik AB (1993) Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. Am J Physiol Lung Cell Mol Physiol 264:L406–L412

    CAS  Google Scholar 

  • Maeda K, Yoshida K, Ichimiya I, Suzuki M (2005) Dexamethasone inhibits tumor necrosis factor-α-induced cytokine secretion from spiral ligament fibrocytes. Hear Res 202:154–160. doi:10.1016/j.heares.2004.08.022

    Article  CAS  PubMed  Google Scholar 

  • Miyao M, Firestein GS, Keithley EM (2008) Acoustic trauma augments the cochlear immune response to antigen. Laryngoscope 118:1801–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon S-K, Park R, Lee H-Y, Nam G-J, Cha K, Andalibi A, Lim DJ (2006) Spiral ligament fibrocytes release chemokines in response to otitis media pathogens. Acta Otolaryngol 126:564–569

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto T et al (2012) Geranylgeranylacetone suppresses noise-induced expression of proinflammatory cytokines in the cochlea. Auris Nasus Larynx 39:270–274. doi:10.1016/j.anl.2011.06.001

    Article  PubMed  Google Scholar 

  • Nelson DI, Nelson RY, Concha-Barrientos M, Fingerhut M (2005) The global burden of occupational noise-induced hearing loss. Am J Ind Med 48:446–458. doi:10.1002/ajim.20223

    Article  PubMed  Google Scholar 

  • Oh G-S et al (2011) Activation of lipopolysaccharide–TLR4 signaling accelerates the ototoxic potential of cisplatin in mice. J Immunol 186:1140–1150. doi:10.4049/jimmunol.1002183

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2008) Recent findings and emerging questions in cochlear noise injury. Hear Res 245:5–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Okano T, Nakagawa T, Kita T, Kada S, Yoshimoto M, Nakahata T, Ito J (2008) Bone marrow-derived cells expressing Iba1 are constitutively present as resident tissue macrophages in the mouse cochlea. J Neurosci Res 86:1758–1767

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:S11–S16. doi:10.1016/S0002-9610(03)00296-4

    Article  Google Scholar 

  • Pawankar R, Tomiyama S, Jinnouchi K, Ikezono T, Nonaka M, Yagi T (1998) Intercellular adhesion molecule-1 expression in the inner ear of rats following secondary immune reaction in the endolymphatic sac. Acta Otolaryngol (Stockh) 118:5–14

    Article  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K (2008) Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. J Comp Neurol 506:930–942

    Article  PubMed  Google Scholar 

  • Satoh H, Firestein GS, Billings PB, Harris JP, Keithley EM (2002) Tumor necrosis factor-α, an initiator, and etanercept, an inhibitor of cochlear inflammation. Laryngoscope 112:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD, Tang W, Shirwany N, Bai U, Rubin CJ, Henig JP, Quirk WS (2009) Anti-intercellular adhesion molecule-1 antibody’s effect on noise damage. Laryngoscope 119:707–712. doi:10.1002/lary.20109

    Article  CAS  PubMed  Google Scholar 

  • Sendowski I, Abaamrane L, Raffin F, Cros A, Clarençon D (2006) Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs. Hear Res 221:119–127. doi:10.1016/j.heares.2006.08.010

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Nuttall AL (2007) Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice. Hear Res 224:1–14. doi:10.1016/j.heares.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  • So H et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-κB. J Assoc Res Otolaryngol 8:338–355

    Article  PubMed  PubMed Central  Google Scholar 

  • So H et al (2008) Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J Assoc Res Otolaryngol 9:290–306. doi:10.1007/s10162-008-0126-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Harris JP (1995) Expression of intercellular adhesion molecule-1 during inner ear inflammation. Ann Otol Rhinol Laryngol 104:69–75

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi K, Hara A (2012) Implications of cytokines in cochlear pathophysiology. In: Kamkin A, Kiseleva I (eds) Mechanosensitivity in cells and tissues, vol 5. Springer, The Netherlands, pp 189–199. doi:10.1007/978-94-007-2004-6_8

    Google Scholar 

  • Tabuchi K, Murashita H, Sakai S, Hoshino T, Uemaetomari I, Hara A (2006) Therapeutic time window of methylprednisolone in acoustic injury. Otol Neurotol 27:1176–1179. doi:10.1097/01.mao.0000226313.82069.3f

    Article  PubMed  Google Scholar 

  • Takemura K et al (2004) Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196:58–68. doi:10.1016/j.heares.2004.06.003

    Article  CAS  PubMed  Google Scholar 

  • Tan BTG, Lee MMG, Ruan R (2008) Bone marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol 509:167–179

    Article  PubMed  Google Scholar 

  • Tan WJ, Thorne PR, Vlajkovic SM (2013) Noise-induced cochlear inflammation. World J Otorhinolaryngol 3:89–99. doi:10.5319/wjo.v3.i3.89

    Article  Google Scholar 

  • Tornabene SV, Sato K, Pham L, Billings P, Keithley EM (2006) Immune cell recruitment following acoustic trauma. Hear Res 222:115–124. doi:10.1016/j.heares.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  • Trinidad A, Ramírez-Camacho R, García-Berrocal JR, Verdaguer JM, Daza R (2005) Labyrinthitis secondary to experimental otitis media. Am J Otolaryngol 26:226–229

    Article  PubMed  Google Scholar 

  • Wakabayashi K et al (2010) Blockade of interleukin-6 signaling suppressed cochlear inflammatory response and improved hearing impairment in noise-damaged mice cochlea. Neurosci Res 66:345–352

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268. doi:10.1007/s101620020028

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Truong T, Billings PB, Harris JP, Keithley EM (2003) Blockage of immune-mediated inner ear damage by etanercept. Otol Neurotol 24:52–57

    Article  PubMed  Google Scholar 

  • WHO (2015) Deafness and hearing loss (fact sheet No. 300). World Health Organisation (WHO) Media Centre. http://www.who.int/mediacentre/factsheets/fs300/en/. Accessed 19 April 2016

  • Yamamoto H, Omelchenko I, Shi X, Nuttall AL (2009) The influence of NF-κB signal-transduction pathways on the murine inner ear by acoustic overstimulation. J Neurosci Res 87:1832–1840. doi:10.1002/jnr.22018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Vethanayagam RR, Dong Y, Cai Q, Hu BH (2015) Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 303:1–15. doi:10.1016/j.neuroscience.2015.05.081

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Ichimiya I, Suzuki M, Mogi G (1999) Effect of proinflammatory cytokines on cultured spiral ligament fibrocytes. Hear Res 137:155–159. doi:10.1016/s0378-5955(99)00134-3

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support from The University of Auckland and the Auckland Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston J. T. Tan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, W.J.T., Thorne, P.R. & Vlajkovic, S.M. Characterisation of cochlear inflammation in mice following acute and chronic noise exposure. Histochem Cell Biol 146, 219–230 (2016). https://doi.org/10.1007/s00418-016-1436-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1436-5

Keywords

Navigation