Skip to main content
Log in

Placental aging and oxidation damage in a tissue micro-array model: an immunohistochemistry study

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

To evaluate the expression of markers correlated with cellular senescence and DNA damage (8-hydroxy-2′-deoxy-guanosine (8-OHdG), p53, p21, APE1/Ref-1 (APE1), interleukin (IL-6 and IL-8) in placentas from healthy and pathologic pregnancies. This retrospective study considered a placental tissue micro-array containing 92 controls from different gestational ages and 158 pathological cases including preeclampsia (PE), HELLP syndrome (hemolysis, elevated liver enzymes, low platelet count), small for gestational age (SGA) fetuses, and intrauterine growth restriction (IUGR) occurring at different gestational ages. In this study, we demonstrated a significant influence of gestational age on the expression in the trophoblast of 8-OHdG, p53, p21, APE1, and IL-6. In placentas of cases affected by PE, HELLP, or IUGR, there was an increased expression of 8-OHdG, p53, APE1, and IL-6 compared to controls (only IL-8 was significantly decreased in cases). In both groups of pathology between 22- and 34-week gestation and after 34-week gestation, APE1 levels were higher in the trophoblast of women affected by hypertensive disorders of pregnancy than women carrying an IUGR fetus. The cytoplasmic expression of 8-OHdG was increased in placentas in IUGR cases compared to PE or HELLP pregnancies. In cases after 34-week gestation, p21 was higher in SGA and IUGR than in controls and late PE. Moreover, p53 was increased after 34-week gestation in IUGR pregnancies. Placentas from pathological pregnancies had an altered expression of 8-OHdG, p53, p21, APE1, IL-6, and IL-8. The alterations of intracellular pathways involving these elements may be the cause or the consequence of placental dysfunction, but in any case reflect an impaired placental function, possibly due to increased aging velocity in pathologic cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

8-OHdG:

8-Hydroxy-2′-deoxy-guanosine

AP:

Apurinic/apyrimidinic

APE1:

APE1/Ref-1 (apurinic apyrimidinic endonuclease redox effector factor-1)

BER:

Base excision repair

BMI:

Body mass index

DNA:

Deoxyribonucleic acid

HELLP:

Hemolysis, elevated liver enzymes, low platelet count

IL-6:

Interleukin-6

IL-8:

Interleukin-8

IUGR:

Intrauterine growth restriction

mRNA:

Messenger ribonucleic acid

PE:

Preeclampsia

RNA:

Ribonucleic acid

SASP:

Senescence-associated secretory phenotype

SGA:

Small for gestational age

References

  • Amu S, Hahn-Zoric M, Malik A, Ashraf R, Zaman S, Kjellmer I, Hagberg H, Padyukov L, Hanson LA (2006) Cytokines in the placenta of Pakistani newborns with and without intrauterine growth retardation. Pediatr Res 59:254–258. doi:10.1203/01.pdr.0000196332.37565.7d

    Article  CAS  PubMed  Google Scholar 

  • Barchiesi A, Wasilewski M, Chacinska A, Tell G, Vascotto C (2015) Mitochondrial translocation of ape1 relies on the mia pathway. Nucleic Acids Res 43:5451–5464. doi:10.1093/nar/gkv433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter JK, Weinstein L (2004) Hellp syndrome: the state of the art. Obstet Gynecol Surv 59:838–845

    Article  PubMed  Google Scholar 

  • Biron-Shental T, Sukenik-Halevy R, Sharon Y, Goldberg-Bittman L, Kidron D, Fejgin MD, Amiel A (2010) Short telomeres may play a role in placental dysfunction in preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 202:381.e1–387.e7. doi:10.1016/j.ajog.2010.01.036

    Article  Google Scholar 

  • Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM (2001) The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the international society for the study of hypertension in pregnancy (isshp). Hypertens Pregnancy 20:IX–XIV. doi:10.1081/PRG-100104165

    Article  CAS  PubMed  Google Scholar 

  • Burton DGA, Krizhanovsky V (2014) Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci 71:4373–4386. doi:10.1007/s00018-014-1691-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesaratto L, Codarin E, Vascotto C, Leonardi A, Kelley MR, Tiribelli C, Tell G (2013) Specific inhibition of the redox activity of ape1/ref-1 by e3330 blocks tnf-α-induced activation of il-8 production in liver cancer cell lines. PLoS One 8:e70909. doi:10.1371/journal.pone.0070909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic ras and the p53 tumor suppressor. PLoS Biol 6:2853–2868. doi:10.1371/journal.pbio.0060301

    Article  PubMed  Google Scholar 

  • Costa F, Panagodage S, Brennecke S, Murthi P (2013) Oc03.01: low-dose aspirin improves trophoblastic function in early-onset pre-eclampsia. Ultrasound Obstet Gynecol 42:5. doi:10.1002/uog.12591

    Article  Google Scholar 

  • Davy P, Nagata M, Bullard P, Fogelson NS, Allsopp R (2009) Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 30:539–542. doi:10.1016/j.placenta.2009.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo H, Okamoto A, Yamada K, Nikaido T, Tanaka T (2005) Frequent apoptosis in placental villi from pregnancies complicated with intrauterine growth restriction and without maternal symptoms. Int J Mol Med 16:79–84

    PubMed  Google Scholar 

  • Ewen ME, Miller SJ (1996) p53 and translational control. Biochim Biophys Acta 1242:181–184

    PubMed  Google Scholar 

  • Fruscalzo A, Schmitz R, Klockenbusch W, Köhler G, Londero AP, Siwetz M, Huppertz B (2012) Human placental transthyretin in fetal growth restriction in combination with preeclampsia and the hellp syndrome. Histochem Cell Biol 138:925–932. doi:10.1007/s00418-012-0997-1

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki A, Watanabe K, Mori T, Kimura C, Shinohara K, Wakatsuki A (2011) Placental oxidative dna damage and its repair in preeclamptic women with fetal growth restriction. Placenta 32:367–372. doi:10.1016/j.placenta.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg D, Mechta F, Yaniv M, Oren M (1991) Wild-type p53 can down-modulate the activity of various promoters. Proc Natl Acad Sci USA 88:9979–9983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn-Zoric M, Hagberg H, Kjellmer I, Ellis J, Wennergren M, Hanson LA (2002) Aberrations in placental cytokine mrna related to intrauterine growth retardation. Pediatr Res 51:201–206. doi:10.1203/00006450-200202000-00013

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Iwai M, Aoki S, Takimoto K, Maruyama M, Maruyama W, Motoyama N (2015) Sirt1 suppresses the senescence-associated secretory phenotype through epigenetic gene regulation. PLoS One 10:e0116480. doi:10.1371/journal.pone.0116480

    Article  PubMed  PubMed Central  Google Scholar 

  • Heazell AEP, Lacey HA, Jones CJP, Huppertz B, Baker PN, Crocker IP (2008) Effects of oxygen on cell turnover and expression of regulators of apoptosis in human placental trophoblast. Placenta 29:175–186. doi:10.1016/j.placenta.2007.11.002

    Article  CAS  PubMed  Google Scholar 

  • Heazell AEP, Sharp AN, Baker PN, Crocker IP (2011) Intra-uterine growth restriction is associated with increased apoptosis and altered expression of proteins in the p53 pathway in villous trophoblast. Apoptosis 16:135–144. doi:10.1007/s10495-010-0551-3

    Article  CAS  PubMed  Google Scholar 

  • Izutsu T, Kudo T, Sato T, Nishiya I, Ohyashiki K, Mori M, Nakagawara K (1998) Telomerase activity in human chorionic villi and placenta determined by trap and in situ trap assay. Placenta 19:613–618

    Article  CAS  PubMed  Google Scholar 

  • Jeschke U, Schiessl B, Mylonas I, Kunze S, Kuhn C, Schulze S, Friese K, Mayr D (2006) Expression of the proliferation marker ki-67 and of p53 tumor protein in trophoblastic tissue of preeclamptic, hellp, and intrauterine growth-restricted pregnancies. Int J Gynecol Pathol 25:354–360. doi:10.1097/01.pgp.0000225838.29127.6

    Article  PubMed  Google Scholar 

  • Jones CJ, Fox H (1980) An ultrastructural and ultrahistochemical study of the human placenta in maternal pre-eclampsia. Placenta 1:61–76

    Article  CAS  PubMed  Google Scholar 

  • Ju Z, Choudhury AR, Rudolph KL (2007) A dual role of p21 in stem cell aging. Ann NYAcad Sci 1100:333–344. doi:10.1196/annals.1395.036

    Article  CAS  Google Scholar 

  • Kimura C, Watanabe K, Iwasaki A, Mori T, Matsushita H, Shinohara K, Wakatsuki A (2013) The severity of hypoxic changes and oxidative dna damage in the placenta of early-onset preeclamptic women and fetal growth restriction. J Matern Fetal Neonatal Med 26:491–496. doi:10.3109/14767058.2012.733766

    Article  CAS  PubMed  Google Scholar 

  • Kudo T, Izutsu T, Sato T (2000) Telomerase activity and apoptosis as indicators of ageing in placenta with and without intrauterine growth retardation. Placenta 21:493–500. doi:10.1053/plac.2000.0538

    Article  CAS  PubMed  Google Scholar 

  • Levy R, Smith SD, Yusuf K, Huettner PC, Kraus FT, Sadovsky Y, Nelson DM (2002) Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression. Am J Obstet Gynecol 186:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Ljungman M (2000) Dial 9-1-1 for p53: mechanisms of p53 activation by cellular stress. Neoplasia 2:208–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) Dna repair, genome stability, and aging. Cell 120:497–512. doi:10.1016/j.cell.2005.01.028

    Article  CAS  PubMed  Google Scholar 

  • Londero AP, Bertozzi S, Visentin S, Fruscalzo A, Driul L, Marchesoni D (2013) High placental index and poor pregnancy outcomes: a retrospective study of 18 386 pregnancies. Gynecol Endocrinol 29:666–669. doi:10.3109/09513590.2013.798273

    Article  PubMed  Google Scholar 

  • Madlener S, Ströbel T, Vose S, Saydam O, Price BD, Demple B, Saydam N (2013) Essential role for mammalian apurinic/apyrimidinic (ap) endonuclease ape1/ref-1 in telomere maintenance. Proc Natl Acad Sci USA 110:17844–17849. doi:10.1073/pnas.1304784110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita T, Kitada S, Krajewski S, Horne WA, Delia D, Reed JC (1995) Overexpression of the bcl-2 protein increases the half-life of p21bax. J Biol Chem 270:26049–26052

    Article  CAS  PubMed  Google Scholar 

  • Reed M, Woelker B, Wang P, Wang Y, Anderson ME, Tegtmeyer P (1995) The c-terminal domain of p53 recognizes dna damaged by ionizing radiation. Proc Natl Acad Sci USA 92:9455–9459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after bax-induced release of cytochrome c. Nature 391:496–499. doi:10.1038/35160

    Article  PubMed  Google Scholar 

  • Rossi DJ, Jamieson CHM, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681–696. doi:10.1016/j.cell.2008.01.036

    Article  CAS  PubMed  Google Scholar 

  • Rossi A, Bortolotti N, Vescovo S, Romanello I, Forzano L, Londero AP, Ambrosini G, Marchesoni D, Curcio F (2013) Ischemia-modified albumin in pregnancy. Eur J Obstet Gynecol Reprod Biol. doi:10.1016/j.ejogrb.2013.06.037

    Google Scholar 

  • Sargent IL, Borzychowski AM, Redman CWG (2006) Nk cells and human pregnancy—an inflammatory view. Trends Immunol 27:399–404. doi:10.1016/j.it.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  • Takagi Y, Nikaido T, Toki T, Kita N, Kanai M, Ashida T, Ohira S, Konishi I (2004) Levels of oxidative stress and redox-related molecules in the placenta in preeclampsia and fetal growth restriction. Virchows Arch 444:49–55. doi:10.1007/s00428-003-0903-2

    Article  CAS  PubMed  Google Scholar 

  • Tamura D, Merideth M, DiGiovanna JJ, Zhou X, Tucker MA, Goldstein AM, Brooks BP, Khan SG, Oh KS, Ueda T, Boyle J, Moslehi R, Kraemer KH (2011) High-risk pregnancy and neonatal complications in the dna repair and transcription disorder trichothiodystrophy: report of 27 affected pregnancies. Prenat Diagn 31:1046–1053. doi:10.1002/pd.2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tell G, Damante G, Caldwell D, Kelley MR (2005) The intracellular localization of ape1/ref-1: more than a passive phenomenon? Antioxid Redox Signal 7:367–384. doi:10.1089/ars.2005.7.367

    Article  CAS  PubMed  Google Scholar 

  • Tell G, Wilson DM 3rd, Lee CH (2010) Intrusion of a dna repair protein in the rnome world: is this the beginning of a new era? Mol Cell Biol 30:366–371. doi:10.1128/MCB.01174-09

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK (2014) Ape1/ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 46:e106. doi:10.1038/emm.2014.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur S, Dhiman M, Tell G, Mantha AK (2015) A review on protein-protein interaction network of ape1/ref-1 and its associated biological functions. Cell Biochem Funct 33:101–112. doi:10.1002/cbf.3100

    Article  CAS  PubMed  Google Scholar 

  • Vascotto C, Salzano AM, D’Ambrosio C, Fruscalzo A, Marchesoni D, di Loreto C, Scaloni A, Tell G, Quadrifoglio F (2007) Oxidized transthyretin in amniotic fluid as an early marker of preeclampsia. J Proteome Res 6:160–170. doi:10.1021/pr060315z

    Article  CAS  PubMed  Google Scholar 

  • Vascotto C, Fantini D, Romanello M, Cesaratto L, Deganuto M, Leonardi A, Radicella JP, Kelley MR, D’Ambrosio C, Scaloni A, Quadrifoglio F, Tell G (2009) Ape1/ref-1 interacts with npm1 within nucleoli and plays a role in the rrna quality control process. Mol Cell Biol 29:1834–1854. doi:10.1128/MCB.01337-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visentin S, Lapolla A, Londero AP, Cosma C, Dalfrà M, Camerin M, Faggian D, Plebani M, Cosmi E (2014) Adiponectin levels are reduced while markers of systemic inflammation and aortic remodelling are increased in intrauterine growth restricted mother-child couple. Biomed Res Int. doi:10.1155/2014/401595

    Google Scholar 

  • Wang Y, Walsh SW (1998) Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta 19:581–586

    Article  CAS  PubMed  Google Scholar 

  • Young ARJ, Narita M (2009) Sasp reflects senescence. EMBO Rep 10:228–230. doi:10.1038/embor.2009.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Eilidh PJ McIntosh for her suggestions on the style and composition of our English. We are grateful to Vito D’Aietti for his precious help. We are grateful to Matteo De Luca for the technical assistance in realizing TMA and Marta Forgiarini and Magdalena Marciniak for technical support. We are also grateful to Prof. Diego Marchesoni, Prof. Carlo Alberto Beltrami, Prof. Carla Di Loreto, Prof. Dr. med. Walter Klockenbusch, and Prof. Gabriele Köhler for their help and suggestions. Furthermore, this research is based on the Ph.D. dissertation of Dr Ambrogio P Londero that took place in the University of Udine.

Authors’ contribution

APL, MO, TG, SM, AF, SB, NN, ES, and LM made substantial contributions to conception and design or acquisition of data or to analysis and interpretation of data. APL, MO, AC, SM, AF, SB, NN, LD, GT, RJL, and LM were involved in drafting the article or revising it critically for important intellectual content. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambrogio P. Londero.

Ethics declarations

Conflict of interests

The authors declare that they have no potential conflicts of interest relevant to this article. This study had no financial support.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Londero, A.P., Orsaria, M., Marzinotto, S. et al. Placental aging and oxidation damage in a tissue micro-array model: an immunohistochemistry study. Histochem Cell Biol 146, 191–204 (2016). https://doi.org/10.1007/s00418-016-1435-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-016-1435-6

Keywords

Navigation