Skip to main content

Advertisement

Log in

Expression of NGF, BDNF and their high-affinity receptors in ovine mammary glands during development and lactation

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The distribution of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and their high-affinity tyrosine kinase receptors TrkA and TrkB was investigated by immunohistochemical method in the mammary gland of ewes from prepubertal stage to involution. NGF and BDNF protein expressions were strong during development of glands at prepubertal stage and during pregnancy and decreased during lactation and involution. The expressions localized in both stromal and parenchymal cells of developing gland were mainly arranged in the apical side of secretory cells during lactation. These observations were also confirmed at transcriptional level by RT-PCR analyses. The highest expression of all genes significantly occurred at prepubertal stage. NGF was then down-regulated from pregnancy to involution, and no statistical differences were observed among these stages. The receptor TrkA was also under-expressed from pregnancy to involution, and its expression significantly differed between pregnancy and 30 days of lactation and also between 30 and 60 days of lactation. BDNF was significantly down-regulated at 60 days of lactation in comparison with prepubertal stage and again between pregnancy and 30 days of lactation. The relative abundance of its receptor, TrkB, showed also a significant down-regulation at 60 days of lactation in comparison with pregnancy and involution. Among the myriad of other molecular signals involved in the mammary gland cycle, the local production of neuropeptides and their receptors could be of interest in understanding their potential role in mammary biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bothwell M (2014) NGF, BDNF, NT3, and NT4. In: Lewin GR, Carter BD (eds) Neurotrophic factors. Handb Exp Pharmacol, vol 220. Springer, Berlin, pp 3–16. doi:10.1007/978-3-642-45106-5_1

  • Brisken C, Ataca D (2015) Endocrine hormones and local signals during the development of the mouse mammary gland. WIREs Dev Biol 4(3):181–195. doi:10.1002/wdev.172

    Article  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Duan J, Wang X, Zhong X, Hu Z, Huang F, Wang H, Zhang J, Li F, Zhang J, Luo X, Li CQ (2014) Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat’s hippocampus. Behav Brain Res 265:76–83. doi:10.1016/j.bbr.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Ellis SE (2005) Bovine mammary progenitor cells: current concepts and future directions. J Mammary Gland Biol Neoplasia 10(1):5–15

    Article  CAS  PubMed  Google Scholar 

  • Capuco AV, Ellis SE (2013) Comparative aspects of mammary gland development and homeostasis. Annu Rev Anim Biosci 1:179–202. doi:10.1146/annurev-animal-031412-103632

    Article  PubMed  Google Scholar 

  • Caroleo MC, Carito V, Pingitore A, Perrotta ID, Perri M, Mancuso D, Russo A, Cione E (2015) Human kidney podocyte cell population as a novel biological target of nerve growth factor. Growth Factors 33(1):14–22. doi:10.3109/08977194.2014.975799

    Article  CAS  PubMed  Google Scholar 

  • Casey T, Dover H, Liesman J, DeVries L, Kiupel M, Vandehaar M, Plaut K (2011) Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows. PLoS One 6(7):e22541. doi:10.1371/journal.pone.0022541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Celis JE, Moreira JM, Cabezón T, Gromov P, Friis E, Rank F, Gromova I (2005) Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol Cell Proteomics 4(4):492–522

    Article  CAS  PubMed  Google Scholar 

  • Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Ranćić G, Tunçel N, Aloe L (2014) Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 5:130–139. doi:10.3389/fimmu.2014.00130

    Article  PubMed Central  PubMed  Google Scholar 

  • Colitti M (2011) Expression of keratin 19, Na–K–Cl cotransporter and estrogen receptor alpha in developing mammary glands of ewes. Histol Histopathol 26(12):1563–1573

    CAS  PubMed  Google Scholar 

  • Colitti M, Farinacci M (2009) Cell turnover and gene activities in sheep mammary glands prior to lambing to involution. Tissue Cell 41(5):326–333. doi:10.1016/j.tice.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Colitti M, Parillo F (2013) Immunolocalization of estrogen and progesterone receptors in ewe mammary glands. Microsc Res Tech 76(9):955–962. doi:10.1002/jemt.22254

    Article  CAS  PubMed  Google Scholar 

  • Colitti M, Stefanon B, Wilde CJ (1999) Apoptotic cell death, bax and bcl-2 expression during sheep mammary gland involution. Anat Histol Embryol 28(4):257–264

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H (1998) Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273(27):16659–16662

    Article  CAS  PubMed  Google Scholar 

  • Di Marco E, Mathor M, Bondanza S, Cutuli N, Marchisio PC, Cancedda R, De Luca M (1993) Nerve growth factor binds to normal human keratinocytes through high and low affinity receptors and stimulates their growth by a novel autocrine loop. J Biol Chem 268(30):22838–22846

    PubMed  Google Scholar 

  • García-Suárez O, Hannestad J, Esteban I, Martínez del Valle M, Naves FJ, Vega JA (1997) Neurotrophin receptor-like protein immunoreactivity in human lymph nodes. Anat Rec 249(2):226–232

    Article  PubMed  Google Scholar 

  • Ghinelli E, Johansson J, Ríos JD, Chen LL, Zoukhri D, Hodges RR, Dartt DA (2003) Presence and localization of neurotrophins and neurotrophin receptors in rat lacrimal gland. Invest Ophthalmol Vis Sci 44(8):3352–3357

    Article  PubMed  Google Scholar 

  • Grueters A, Lakshmanan J, Tarris R, Alm J, Fisher DA (1985) Nerve growth factor in mouse milk during early lactation: lack of dependency on submandibular salivary glands. Pediatr Res 19(9):934–937

    Article  CAS  PubMed  Google Scholar 

  • Hassiotou F, Twigger A-J, Pundavela J, Roselli S, Hartmann P, Geddes D, Hondermarck H (2014) Neurotrophin synthesis by mammary cells during lactation. FASEB J 28(1 Supplement):623.19

    Google Scholar 

  • Hausman GJ, Barb CR, Dean RG (2008) Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors. Domest Anim Endocrinol 35(1):24–34. doi:10.1016/j.domaniend.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Hondermarck H (2012) Neurotrophins and their receptors in breast cancer. Cytokine Growth Factor Rev 23(6):357–365. doi:10.1016/j.cytogfr.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  • Hovey RC, Aimo L (2010) Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia 15(3):279–290. doi:10.1007/s10911-010-9187-8

    Article  PubMed Central  PubMed  Google Scholar 

  • Hovey RC, Davey HW, Mackenzie DD, McFadden TB (1998) Ontogeny and epithelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol Cell Endocrinol 136(2):139–144

    Article  CAS  PubMed  Google Scholar 

  • Hovey RC, McFadden TB, Akers RM (1999) Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J Mammary Gland Biol Neoplasia 4(1):53–68

    Article  CAS  PubMed  Google Scholar 

  • Khokha R, Werb Z (2011) Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol 3(4):a004333. doi:10.1101/cshperspect.a004333

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294(5548):1945–1948

    Article  CAS  PubMed  Google Scholar 

  • Li R, Xia W, Zhang Z, Wu K (2011) S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk. PLoS One 6(6):e21663. doi:10.1371/journal.pone.0021663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maroder M, Bellavia D, Vacca A, Felli MP, Screpanti I (2000) The thymus at the crossroad of neuroimmune interactions. Ann N Y Acad Sci USA 917:741–747

    Article  CAS  Google Scholar 

  • McCave EJ, Cass CA, Burg KJ, Booth BW (2010) The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 15(3):291–299. doi:10.1007/s10911-010-9190-0

    Article  PubMed  Google Scholar 

  • Müller D, Davidoff MS, Bargheer O, Paust HJ, Pusch W, Koeva Y, Jezek D, Holstein AF, Middendorff R (2006) The expression of neurotrophins and their receptors in the prenatal and adult human testis: evidence for functions in Leydig cells. Histochem Cell Biol 126(2):199–211

    Article  PubMed  Google Scholar 

  • Naylor MJ, Ginsburg E, Iismaa TP, Vonderhaar BK, Wynick D, Ormandy CJ (2003) The neuropeptide galanin augments lobuloalveolar development. J Biol Chem 278:29145–29152

    Article  CAS  PubMed  Google Scholar 

  • Nǿrgaard JV, Theil PK, Sǿrensen MT, Sejrsen K (2008) Cellular mechanisms in regulating mammary cell turnover during lactation and dry period in dairy cows. J Dairy Sci 91:2319–2327. doi:10.3168/jds.2007-0767

    Article  PubMed  Google Scholar 

  • Numakawa T, Yokomaku D, Richards M, Hori H, Adachi N, Kunugi H (2010) Functional interactions between steroid hormones and neurotrophin BDNF. World J Biol Chem 1(5):133–143. doi:10.4331/wjbc.v1.i5.133

    Article  PubMed Central  PubMed  Google Scholar 

  • Pérez-Pérez M, García-Suárez O, Blanco-Gelaz MA, Esteban I, Ciriaco E, Laurà R, Germanà A, Silos-Santiago I, Vega JA (2004) TrkB mRNA and protein in mouse spleen: structure of the spleen of functionally deficient TrkB mice. Cell Tissue Res 316(2):179–187

    Article  PubMed  Google Scholar 

  • Piantoni P, Bionaz M, Graugnard DE, Daniels KM, Everts RE, Rodriguez-Zas SL, Lewin HA, Hurley HL, Akers M, Loor JJ (2010) Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development. BMC Genom 11:331–354

    Article  Google Scholar 

  • Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci 361(1473):1545–1564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Sariola H (2001) The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci 58(8):1061–1066

    Article  CAS  PubMed  Google Scholar 

  • Seifer DB, Feng B, Shelden RM (2006) Immunocytochemical evidence for the presence and location of the neurotrophin-Trk receptor family in adult human preovulatory ovarian follicles. Am J Obstet Gynecol 194(4):1129–1136. doi:10.1016/j.ajog.2005.12.022

    Article  CAS  PubMed  Google Scholar 

  • Shibayama E, Koizumi H (1996) Cellular localization of the Trk neurotrophin receptor family in human non-neuronal tissues. Am J Pathol 148(6):1807–1818

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh M, Meyer EM, Simpkins JW (1995) The effect of ovariectomy and estradiol replacement on brain-derived neurotrophic factor messenger ribonucleic acid expression in cortical and hippocampal brain regions of female Sprague-Dawley rats. Endocrinology 136:2320–2324

    CAS  PubMed  Google Scholar 

  • Skaper SD (2012) The neurotrophin family of neurotrophic factors: an overview. In: Skaper SD (ed) Neurotrophic factors. Methods and protocols, methods in molecular biology, vol 846. Springer Science+Business Media, LLC, Berlin, pp 1–11

    Chapter  Google Scholar 

  • SPSS® Statistical Package for Social Science SPSS (2007) Advanced statistics 16.0. SPSS Inc., Chicago

  • Stefanon B, Colitti M, Gabai G, Knight CH, Wilde CJ (2002) Mammary apoptosis and lactation persistency in dairy animals. J Dairy Res 69(1):37–52

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z (2005) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132(17):3923–3933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanos T, Rojo LJ, Echeverria P, Brisken C (2012) ER and PR signaling nodes during mammary gland development. Breast Cancer Res 14:210–222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsai RY (2004) A molecular view of stem cell and cancer cell selfrenewal. Int J Biochem Cell Biol 36:684–694

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Mariman E, Renes J, Keijer J (2008) The secretory function of adipocytes in the physiology of white adipose tissue. J Cell Physiol 216(1):3–13. doi:10.1002/jcp.21386

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Spitzer E, Meyer D, Sachs M, Niemann C, Hartmann G, Weidner KM, Birchmeier C, Birchmeier W (1995) Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 131:215–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Colitti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colitti, M. Expression of NGF, BDNF and their high-affinity receptors in ovine mammary glands during development and lactation. Histochem Cell Biol 144, 559–570 (2015). https://doi.org/10.1007/s00418-015-1360-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1360-0

Keywords

Navigation