Skip to main content
Log in

Selective localization of diacylglycerol kinase (DGK)ζ in the terminal tubule cells in the submandibular glands of early postnatal mice

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The present immunohistochemical study was attempted to localize in the submandibular glands of mice at various postnatal stages a diacylglycerol kinase (DGK) isoform termed DGKζ which is characterized by a nuclear localization signal and a nuclear export signal. This attempt was based on following facts: the continuous postnatal differentiation of glandular cells in the rodent submandibular gland, the regulatory role of DGK in the activity of protein kinase C (PKC) through attenuation of diacylglycerol (DAG), and the possible involvement of PKC in various cellular activities including the saliva secretion as well as the cell differentiation. As a result, a selective localization of immunoreactivity for DGKζ was detected in terminal tubule (TT) cells which comprise a majority of the newborn acinar structure and differentiate into the intercalated duct cells and/or the acinar cells. The immunoreactivity was deposited in portions of the cytoplasm lateral and basal to the nucleus, but not in the nuclei themselves. Although the immunoreactive TT cells remained until later stages in female specimen than in male, they eventually disappeared in both sexes by young adult stages. The present finding suggests that the regulatory involvement of DGKζ in PKC functions via control of DAG is exerted in the differentiation of the TT cells. In addition, another possible involvement of DGKζ in the regulation of secretion of the TT cells as well as its functional significance of its nuclear localization in the submandibular ganglion cells was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alvares EP, Sesso A (1975) Cell proliferation, differentiation and transformation in the rat submandibular gland during early postnatal growth. A quantitative and morphological study. Arch Histol Jpn 38:177–208

    Article  CAS  PubMed  Google Scholar 

  • Amano O, Iseki S (1998) Occurrence and nuclear localization of cAMP response element-binding protein in the post-natal development of the rat submandibular gland. Histochem J 30:591–601

    Article  CAS  PubMed  Google Scholar 

  • Amano O, Tsuji T, Nakamura T, Iseki S (1991) Expression of transforming growth factor beta 1 in the submandibular gland of the rat. J Histochem Cytochem 39:1707–1711

    Article  CAS  PubMed  Google Scholar 

  • Ball WD, Nelson NJ (1978) A Stage-Restricted Secretory System in the submandibular gland of the neonatal rat. Differentiation 10:147–158

    Article  CAS  PubMed  Google Scholar 

  • Ball WD, Hand AR, Moreira JE, Johnson A (1988) A secretory protein restricted to type I cells in neonatal rat submandibular glands. Dev Biol 129:464–475

    Article  CAS  PubMed  Google Scholar 

  • Barka T (1980) Biologically active polypeptides in submandibular glands. J Histochem Cytochem 28:836–859

    Article  CAS  PubMed  Google Scholar 

  • Clemens KJ, Trayner I, Menaya J (1992) The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci 103:881–887

    CAS  PubMed  Google Scholar 

  • Culp DJ, Zhang V, Evans RL (2011) Role of calcium and PKC in salivary mucous cell exocrine secretion. J Dent Res 90:1469–1476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cutler LS, Chaudhry AP (1974) Cytodifferentiation of the acinar cells of the rat submandibular gland. Dev Biol 41:31–41

    Article  CAS  PubMed  Google Scholar 

  • Denny PC, Chai Y, Pimprapaiporn W, Denny PA (1990) Three-dimensional reconstruction of adult female mouse submandibular gland secretory structures. Anat Rec 226:489–500

    Article  CAS  PubMed  Google Scholar 

  • Denny PC, Liu P, Denny PA (1999) Evidence of a phonotypically determined ductal cell lineage in mouse salivary glands. Anat Rec 256:84–90

    Article  CAS  PubMed  Google Scholar 

  • Dvorák M (1969) The secretory cells of the submaxillary gland in the perinatal period of development in the rat. Z Zellforsch Mikrosk Anat 99:346–356

    Article  PubMed  Google Scholar 

  • Evangelisti C, Astolfi A, Gaboardi GC, Tazzari P, Pession A, Goto K, Martelli AM (2009) TIS21/BTG2/PC3 and cyclin D1 are key determinants of nuclear diacylglycerol kinase-zeta-dependent cell cycle arrest. Cell Signal 21:801–809

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Kondo H (1993) Molecular cloning and expression of a 90-kDa diacylglycerol kinase that predominantly localizes in neurons. Proc Natl Acad Sci USA 90:7598–75602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto K, Kondo H (1996) A 104-kDa diacylglycerol kinase containing ankyrin-like repeats localizes in the cell nucleus. Proc Natl Acad Sci USA 93:11196–11201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto K, Funayama M, Kondo H (1994) Cloning and expression of a cytoskeleton-associated diacylglycerol kinase that is dominantly expressed in cerebellum. Proc Natl Acad Sci USA 91:13042–13046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto K, Hozumi Y, Nakano T, Saino-Saito S, Martelli AM (2008) Lipid messenger, diacylglycerol, and its regulator, diacylglycerol kinase, in cells, organs, and animals: history and perspective. Tohoku J Exp Med 214:199–212

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Tanaka T, Nakano T, Okada M, Hozumi Y, Topham MK, Martelli AM (2013) DGKζ under stress conditions: “To be nuclear or cytoplasmic, that is the question”. Adv Biol Regul 54:242–253

    Article  Google Scholar 

  • Gresik EW (1975) The postnatal development of the sexually dimorphic duct system and of amylase activity in the submandibular glands of mice. Cell Tissue Res 157:411–422

    Article  CAS  PubMed  Google Scholar 

  • Gresik EW (1980) Postnatal developmental changes in submandibular glands of rats and mice. J Histochem Cytochem 28:860–870

    Article  CAS  PubMed  Google Scholar 

  • Hecht R, Connelly M, Marchetti L, Ball W, Hand A (2000) Cell death during development of intercalated ducts in the rat submandibular gland. Anat Rec 258:349–358

    Article  CAS  PubMed  Google Scholar 

  • Heppner TJ, Fiekers JF (2003) Long-term potentiation of nicotinic synaptic transmission in rat superior cervical ganglia produced by phorbol ester and tetanic stimulation. Auton Neurosci 105:35–44

    Article  CAS  PubMed  Google Scholar 

  • Hipkaeo W, Wakayama T, Yamamoto M, Iseki S (2004) Expression and localization of the transcription factor JunD in the duct system of mouse submandibular gland. J Histochem Cytochem 52:479–490

    Article  CAS  PubMed  Google Scholar 

  • Hozumi Y, Ito T, Nakano T, Nakagawa T, Aoyagi M, Kondo H, Goto K (2003) Nuclear localization of diacylglycerol kinase zeta in neurons. Eur J Neurosci 18:1448–1457

    Article  PubMed  Google Scholar 

  • Hozumi Y, Watanabe M, Goto K (2010) Signaling cascade of diacylglycerol kinase β in the pituitary intermediate lobe: dopamine D2 receptor/phospholipase Cb4/diacylglycerol kinase β/protein kinase Cα. J Histochem Cytochem 58:119–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hozumi Y, Matsui H, Sakane F, Watanabe M, Goto K (2013) Distinct expression and localization of diacylglycerol kinase isozymes in rat retina. J Histochem Cytochem 61:462–476

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamaishi H, Endoh T, Suzuki T (2004) Multiple signal pathways coupling VIP and PACAP receptors to calcium channels in hamster submandibular ganglion neurons. Auton Neurosci 111:15–26

    Article  CAS  PubMed  Google Scholar 

  • Kanoh H, Yamada K, Sakane F (1990) Diacylglycerol kinase: a key modulator of signal transduction? Trends Biochem Sci 15:47–50

    Article  CAS  PubMed  Google Scholar 

  • Kanoh H, Yamada K, Sakane F (2002) Diacylglycerol kinases: emerging downstream regulators in cell signaling systems. J Biochem 131:629–633

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Han SH, Quan HY, Jung YJ, An J, Kang P, Park JB, Yoon BJ, Seol GH, Min SS (2012) Bryostatin-1 promotes long-term potentiation via activation of PKCα and PKCε in the hippocampus. Neuroscience 226:348–355

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Choi HK, Kim ST, Chung S, Park MK, Cho JH, Ho WK, Cho H (2010) Cholesterol inhibits M-type K+ channels via protein kinase C-dependent phosphorylation in sympathetic neurons. J Biol Chem 285:10939–10950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leeson CR, Jacoby F (1959) An electron microscopic study of the rat submaxillary gland during its post-natal development and in the adult. J Anat 93:287–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Los AP, Vinke FP, de Widt J, Topham MK, van Blitterswijk WJ, Divecha N (2006) The retinoblastoma family proteins bind to and activate diacylglycerol kinase zeta. J Biol Chem 281:858–866

    Article  CAS  PubMed  Google Scholar 

  • Melvin JE, Yule D, Shuttleworth T, Begenisich T (2005) Regulation of fluid and electrolyte secretion in salivary gland acinar cells. Annu Rev Physiol 67:445–469

    Article  CAS  PubMed  Google Scholar 

  • Moreira JE, Ball WD, Mirels L, Hand AR (1991) Accumulation and localization of two adult acinar cell secretory proteins during development of the rat submandibular gland. Am J Anat 191:167–184

    Article  CAS  PubMed  Google Scholar 

  • Nauntofte B, Poulsen JH (1986) Effects of Ca2+ and furosemide on Cl transport and O2 uptake in rat parotid acini. Am J Physiol 251:C175–C185

    CAS  PubMed  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Hozumi Y, Ichimura T, Tanaka T, Hasegawa H, Yamamoto M, Takahashi N, Iseki K, Yagisawa H, Shinkawa T, Isobe T, Goto K (2011) Interaction of nucleosome assembly proteins abolishes nuclear localization of DGKζ by attenuating its association with importins. Exp Cell Res 317:2853–2863

    Article  CAS  PubMed  Google Scholar 

  • Putney JW Jr, McKinney JS, Aub DL, Leslie BA (1983) Phorbol ester-induced protein secretion in rat parotid gland. Relationship to the role of inositol lipid breakdown and protein kinase C activation in stimulus-secretion coupling. Mol Pharmacol 26:261–266

    Google Scholar 

  • Rasmussen H (1986) The calcium messenger system (1) (2). N Engl J Med 314:1094/1164–1101/1170

    Google Scholar 

  • Sasaki H, Hozumi Y, Hasegawa H, Ito T, Takagi M, Ogino T, Watanabe M, Goto K (2006) Gene expression and localization of diacylglycerol kinase isozymes in the rat spinal cord and dorsal root ganglia. Cell Tissue Res 326:35–42

    Article  CAS  PubMed  Google Scholar 

  • Soltoff SP, Toker A (1995) Carbachol, substance P, and phorbol ester promote the tyrosine phosphorylation of protein kinase C delta in salivary gland epithelial cells. J Biol Chem 270:13490–13495

    Article  CAS  PubMed  Google Scholar 

  • Srivastava HC (1977) Development of acinar cells in the rat submandibular gland. J Anat 123:459–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sumner AD, Margiotta JF (2008) Pituitary adenylate cyclase-activating polypeptide (PACAP) alters parasympathetic neuron gene expression in a time-dependent fashion. J Mol Neurosci 36:141–156

    Article  CAS  PubMed  Google Scholar 

  • Takuma T, Ichida T (1986) Phorbol ester stimulates amylase secretion from rat parotid cells. FEBS Lett 199:53–56

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Okada M, Hozumi Y, Tachibana K, Kitanaka C, Hamamoto Y, Martelli AM, Topham MK, Iino M, Goto K (2013) Cytoplasmic localization of DGKζ exerts a protective effect against p53-mediated cytotoxicity. J Cell Sci 126:2785–2797

    Article  CAS  PubMed  Google Scholar 

  • Tojyo Y, Tanimura A, Matsui S, Matsumoto Y (1993) Carbachol-induced potassium release in rat parotid acini: comparison of the roles of cytosolic Ca2+ and protein kinase C. Jpn J Pharmacol 63:439–446

    Article  CAS  PubMed  Google Scholar 

  • Turner RJ, Sugiya H (2002) Understanding salivary fluid and protein secretion. Oral Dis 8:3–11

    Article  PubMed  Google Scholar 

  • Yamada E, Endoh T, Suzuki T (2002) Angiotensin II-induced inhibition of calcium currents via G(q/11)-protein involving protein kinase C in hamster submandibular ganglion neurons. Neurosci Res 43:179–189

    Article  CAS  PubMed  Google Scholar 

  • Yamashina S, Barka T (1972) Localization of peroxidase activity in the developing submandibular gland of normal and isoproterenol-treated rats. J Histochem Cytochem 20:855–872

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura K, Fujita-Yoshigaki J, Murakami M, Segawa A (2002) Cyclic AMP has distinct effects from Ca(2+) in evoking priming and fusion/exocytosis in parotid amylase secretion. Pflugers Arch 444:586–596

    Article  CAS  PubMed  Google Scholar 

  • Zajicek G, Yagil C, Michaeli Y (1985) The streaming submandibular gland. Anat Rec 213:150–158

    Article  CAS  PubMed  Google Scholar 

  • Zinzen KM, Hand AR, Yankova M, Ball WD, Mirels L (2004) Molecular cloning and characterization of the neonatal rat and mouse submandibular gland protein SMGC. Int J Genes Genomes 334:23–33

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research grants from Faculty of Medicine, Khon Kaen University (Nos. I57326 and RG57301).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiphawi Hipkaeo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hipkaeo, W., Chomphoo, S., Pakkarato, S. et al. Selective localization of diacylglycerol kinase (DGK)ζ in the terminal tubule cells in the submandibular glands of early postnatal mice. Histochem Cell Biol 144, 185–193 (2015). https://doi.org/10.1007/s00418-015-1328-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-015-1328-0

Keywords

Navigation