Skip to main content
Log in

Ontogenic development of nerve fibers in human fetal livers: an immunohistochemical study using neural cell adhesion molecule (NCAM) and neuron-specific enolase (NSE)

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate nerve fibers (NF) in human fetal livers. An immunohistochemical study was performed. NF were classified into portal tract innervation (PoI) and parenchymal innervation (PaI). The hilum area showed many Pol NF at 7 GW, and NF increased with gestational week (GW). Direct innervations to biliary epithelium were recognized. In large portal tracts, a few NCAM-positive mesenchymal cells were seen at 8 GW and many mesenchymal cells were noted around 12 GW. Apparent NF emerged around 15 GW, and NF increased with GW. Many NF plexuses were seen in 30–40 GW. In small portal tracts, no NF were seen in 7–10 GW. A few NCAM-positive mesenchymal cells emerged in 11 GW, and they increased thereafter. Apparent NF were seen around 20 GW and NF increased with GW. At term (40 GW), PoI NF were still immature. Ductal plate (DP) was positive for NCAM, NSE, chromogranin and synaptophysin, and direct innervations to DP were seen. The direct innervations to developing bile ducts and peribiliary glands were also seen. PaI NF were first seen at 21 GW and was consistent until 40 GW in which a few NF were seen in PaI. These observations suggest that PoI NF arise from committed portal mesenchyme. PaI NF are very immature at 40 GW. There are direct innervations to bile ducts, peribiliary glands, portal veins, hepatic arteries, and DP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akiyoshi H (1989) Ultrastructure of cholinergic innervation in the cirrhotic liver in guinea pigs. Neurohistochemical and ultrastructural study. Virchow Arch B 57:81–90

    Article  CAS  Google Scholar 

  • Berthoud HR (2004) Anatomy and function of sensory hepatic nerves. Anat Rec 280A:827–835

    Article  Google Scholar 

  • Bioulac-Sage P, Lafon ME, Saric J, Balabaud C (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10:105–112

    Article  CAS  PubMed  Google Scholar 

  • Burt AD, Tiniakos D, MacSween RNM, Griffiths MR, Wisse E, Polak JM (1989) Localization of adrenergic and neuropeptide tyrosine-containing nerves in the mammalian liver. Hepatology 9:839–845

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Denef C, Desmet VJ, Roskams T (2001) Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 33:148–158

    Article  CAS  PubMed  Google Scholar 

  • Cassiman D, Libbrecht L, Sinelli N, Desmet V, Denef C, Roskams T (2002) The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor 3. Am J Pathol 161:521–530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cassiman D, Sinelli N, Bockx I et al (2007) Human hepatic progenitor cells express vasoactive intestinal peptide receptor type 2 and receive nerve endings. Liver Int 27:323–328

    Article  CAS  PubMed  Google Scholar 

  • Delalande JM, Milla PJ, Burns AJ (2004) Hepatic nervous system development. Anat Rec 280A:848–853

    Article  Google Scholar 

  • Ding WG, Kitasato H, Kimura H (1997) Development of neuropeptide Y innervation in the liver. Microsc Res Tech 15:365–371

    Article  Google Scholar 

  • El-Salhy M, Stenling R, Grimelius L (1983) Peptidergic innervation and endocrine cells in human liver. Scand J Gastroenterol 28:809–815

    Article  Google Scholar 

  • Feher E, Fodor M, Gorcs T, Feher J, Vallent K (1991) Immunohistochemical distribution of neuropeptide Y and catecholamine synthesizing enzymes in nerve fibers of the human liver. Digestion 50:194–201

    Article  CAS  PubMed  Google Scholar 

  • Feher E, Fodor M, Feher J (1992) Ultrastructural localisation of somatostatin- and substance P immunoreactive nerve fibers in the feline liver. Gastroenterology 102:287–294

    CAS  PubMed  Google Scholar 

  • Goehler LE, Sternini C (1991) Neuropeptide Y immunoreactivity in the mammalian liver: pattern of innervation and coexistence with tyrosine hydroxylase immunoreactivity. Cell Tissue Res 265:287–295

    Article  CAS  PubMed  Google Scholar 

  • Goehler LE, Sternini C, Brecha NC (1988) Calcitonin gene-related peptide immunoreactivity in the biliary pathway and liver of the guinea pig: distribution and co-localization with substance P. Cell Tissue Res 253:145–150

    Article  CAS  PubMed  Google Scholar 

  • Jungermann K, Stumpel F (1999) Role of hepatic, intrahepatic and hepatoenteral nerves in the regulation of carbohydrate metabolism and hemodynamics of the liver and intestine. Hepatogastroenterology 46(suppl 2):1414–1417

    PubMed  Google Scholar 

  • Lee JA, Ahmed Q, Hines JE, Burt AD (1992) Disappearance of hepatic parenchymal nerves in human liver cirrhosis. Gut 33:87–91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin YS, Nosaka S, Amakata Y, Maeda T (1995) Comparative study of the mammalian liver innervation: an immunohistochemical study of PGP 9.5, dopamine-beta-hydroxylase and tyrosine hydroxylase. Comp Biochem Physiol A Physiol 110:289–298

    Article  CAS  PubMed  Google Scholar 

  • McCuskey RS (2004) Anatomy of efferent hepatic nerves. Anat Rec 280A:821–826

    Article  Google Scholar 

  • Μiyazawa Y, Fukuda Y, Imoto M, Koyama Y, Nagura H (1988) Immunohistochemical studies on the distribution of nerve fibers in chronic liver diseases. Am J Gastroenterol 83:1108–1114

    Google Scholar 

  • Nakatani K, Seki S, Kawada N, Kobayashi K, Kaneda K (1996) Expression of neural cell adhesion molecule (N-CAM) in perisinusoidal stellate cells of human liver. Cell Tissue Res 283:159–165

    Article  CAS  PubMed  Google Scholar 

  • Oben JA, Diehl AM (2004) Sympathetic nervous system regulation of liver repair. Anat Rec 280A:874–883

    Article  Google Scholar 

  • Oben JA, Roskams T, Yang S et al (2003) Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology 38:664–673

    Article  CAS  PubMed  Google Scholar 

  • Oben JA, Roskams T, Sinelli N et al (2004) Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 53:438–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Püschel GP (2004) Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves. Anat Rec 280A:854–867

    Article  Google Scholar 

  • Roskams T, Cassiman D, De Vos R, Libbrecht L (2004) Neuroregulation of the neuroendocrine compartment of the liver. Anat Rec 280A:910–923

    Article  CAS  Google Scholar 

  • Scoazec JY, Racine L, Couvelard A, Moreau A, Flejou JF, Bernuau D, Feldmann G (1993) Parenchymal innervation of normal and cirrhotic human liver: a light and electron microscopic study using monoclonal antibodies against neural cell-adhesion molecule. J Histochem Cytochem 41:899–908

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Kawaguchi M (2005) Primary clear cell adenocarcinoma of the peritoneum. Tohoku J Exp Med 271:271–275

    Article  Google Scholar 

  • Terada T, Nakanuma Y (1987) Solitary cystic dilation of the intrahepatic bile duct: morphology of two autopsy cases and a review of the literature. Am J Gastroenterol 82:1301–1305

    CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1988) Morphological examination of intrahepatic bile ducts in hepatolithiasis. Virchows Arch 413:167–176

    Article  CAS  Google Scholar 

  • Terada T, Nakanuma Y (1989) Innervation of intrahepatic bile ducts and peribiliary glands in normal livers, extrahepatic biliary obstruction and hepatolithiasis: an immunohistochemical study. J Hepatol 9:141–148

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1993a) Development of human peribiliary capillary plexus: a lectin-histochemical and immunohistochemical study. Hepatology 18:529–536

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1993b) Development of human intrahepatic peribiliary glands: histological, keratin immunohistochemical and mucus histochemical analyses. Lab Invest 68:261–269

    CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1994) Profiles of expression of carbohydrate chain structures during human intrahepatic bile duct development and maturation: a lectin-histochemical and immunohistochemical study. Hepatology 20:388–397

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1995a) Expression of pancreatic enzymes (α-amylase, trypsinogen and lipase) during human liver development and maturation. Gastroenterology 108:1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1995b) Detection of apoptosis and expression of apoptosis-related proteins during human intrahepatic bile duct development. Am J Pathol 146:67–74

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y, Ohta G (1987) Glandular elements around the intrahepatic bile ducts in man: their morphology and distribution in normal livers. Liver 7:1–8

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Ishida F, Nakanuma Y (1989) Vascular plexus around intrahepatic bile ducts in normal livers and portal hypertension. J Hepatol 8:139–149

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Okada Y, Nakanuma Y (1995) Expression of matrix proteinases during human intrahepatic bile duct development: a possible role in biliary cell migration. Am J Pathol 147:1207–1213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Terada T, Kitamura Y, Nakanuma Y (1997a) Normal and abnormal development of the intrahepatic biliary system: a review. Tohoku J Exp Med 181:19–32

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Kitamura Y, Ohta T, Nakanuma Y (1997b) Endocrine cells in hepatobiliary cystadenoma and cystadenocarcinoma. Virchows Arch 430:37–40

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Ashida K, Kitamura Y et al (1998) Expression of E-cadherin, alpha-catenin and beta-catenin during human intrahepatic bile duct development. J Hepatol 28:263–269

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Kawaguchi M, Furukawa K, Sekido Y, Osamura Y (2002) Minute mixed ductal-endocrine carcinoma of the pancreas with predominant intraductal growth. Pathol Int 52:740–746

    Article  PubMed  Google Scholar 

  • Tiniakos DG, Mathew J, Kittas C, Burt AD (2008) Ontogeny of human intrahepatic innervation. Virchows Arch 452:435–442

    Article  PubMed  Google Scholar 

  • Ueno T, Tanikawa K (1996) Intralobular innervation and lipocyte contractility in the liver. Nutrition 13:141–148

    Article  Google Scholar 

  • Ueno T, Inuzuka S, Torimura T et al (1991) Distribution of substance P and VIP in the human liver. Am J Gastroenterol 86:1633–1637

    CAS  PubMed  Google Scholar 

  • Ueno T, Bioulac-Sage P, Balabaud C, Rosenbaum J (2004) Innervation of the sinusoidal wall: regulation of the sinusoidal diameter. Anat Rec 280A:868–873

    Article  Google Scholar 

Download references

Conflict of interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Terada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terada, T. Ontogenic development of nerve fibers in human fetal livers: an immunohistochemical study using neural cell adhesion molecule (NCAM) and neuron-specific enolase (NSE). Histochem Cell Biol 143, 421–429 (2015). https://doi.org/10.1007/s00418-014-1286-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1286-y

Keywords

Navigation