Skip to main content

Advertisement

Log in

Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Lentiviral vectors are valuable tools to express genes of interest in living animals and stem cell cultures. The use of promoters in lentiviral constructs has been successfully used to drive gene expression in particular cell types including neurons and glia of the central nervous system in vivo. However, their suitability in cell culture is less well documented. In this paper, we describe lentiviral vectors containing neuronal promoters of the murine stem cell virus, of the synapsin 1 gene, the tubulin alpha 1 gene, and the calmodulin kinase II gene, and the glial promoter of the glial fibrillary acidic protein gene to drive reporter gene expression in primary dissociated cerebellar cell cultures and in slice cultures. While the glial promoter was highly specific for glia, the neuronal promoters were active in neurons and glia of dissociated cultures to a comparable extent. In slice cultures, neuronal and glial promoters demonstrated higher, but not absolute selectivity for particular cell types. In addition, the promoters allowed for an efficient and graded expression of genes in dissociated cultures. By using selected combinations of vectors, it was also possible to drive the expression of two genes in one cell type with high efficiency. A gene of interest in combination with a reporter gene can thus be expressed in a graded manner to reveal gene function in a rather short time and in a complex cellular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MBP:

Myelin basic protein

GFAP:

Glial fibrillary acidic protein

MSCV:

Murine stem cell virus

CMV:

Cytomegalovirus

Syn1:

Synapsin 1

Ta1:

Tubulin alpha 1

CaMKII:

Calmodulin kinase II

CAG:

Chicken beta actin

BSA:

Bovine serum albumin

GFP/RFP:

Green/red fluorescent protein

MAP:

Microtubule-associated protein

References

  • al Yacoub N, Romanowska M, Haritonova N, Foerster J (2007) Optimized production and concentration of lentiviral vectors containing large inserts. J Gene Med 9:579–584

    Article  CAS  PubMed  Google Scholar 

  • Anliker B, Abel T, Kneissl S, Hlavaty J, Caputi A, Brynza J, Schneider IC, Munch RC, Petznek H, Kontermann RE, Koehl U, Johnston IC, Keinanen K, Muller UC, Hohenadl C, Monyer H, Cichutek K, Buchholz CJ (2010) Specific gene transfer to neurons, endothelial cells and hematopoietic progenitors with lentiviral vectors. Nat Methods 7:929–935

    Article  CAS  PubMed  Google Scholar 

  • Baader SL, Bucher S, Schilling K (1997) The developmental expression of neuronal nitric oxide synthase in cerebellar granule cells is sensitive to GABA and neurotrophins. Dev Neurosci 19:283–290

    Article  CAS  PubMed  Google Scholar 

  • Blow N (2009) Journeys across the membrane. Nature 458:239–242

    Article  CAS  PubMed  Google Scholar 

  • Boukhtouche F, Janmaat S, Vodjdani G, Gautheron V, Mallet J, Dusart I, Mariani J (2006) Retinoid-related orphan receptor alpha controls the early steps of Purkinje cell dendritic differentiation. J Neurosci 26:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Brenner M, Kisseberth WC, Su Y, Besnard F, Messing A (1994) GFAP promoter directs astrocyte-specific expression in transgenic mice. J Neurosci 14:1030–1037

    CAS  PubMed  Google Scholar 

  • Bulger M, Groudine M (2011) Functional and mechanistic diversity of distal transcription enhancers. Cell 144:327–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crespi B (2013) Diametric gene-dosage effects as windows into neurogenetic architecture. Curr Opin Neurobiol 23:143–151

    Article  CAS  PubMed  Google Scholar 

  • de Backer MW, Garner KM, Luijendijk MC, Adan RA (2011) Recombinant adeno-associated viral vectors. Methods Mol Biol 789:357–376

    Article  PubMed  Google Scholar 

  • Donnelly ML, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    CAS  PubMed  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed Central  PubMed  Google Scholar 

  • Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L (2000) Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat Genet 25:217–222

    Article  CAS  PubMed  Google Scholar 

  • Frost J, Monk D, Moschidou D, Guillot PV, Stanier P, Minger SL, Fisk NM, Moore HD, Moore GE (2011) The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics 6:52–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R, Cichutek K, Buchholz CJ (2008) Targeted cell entry of lentiviral vectors. Mol Ther 16:1427–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fux C, Langer D, Kelm JM, Weber W, Fussenegger M (2004) New-generation multicistronic expression platform: pTRIDENT vectors containing size-optimized IRES elements enable homing endonuclease-based cistron swapping into lentiviral expression vectors. Biotechnol Bioeng 86:174–187

    Article  CAS  PubMed  Google Scholar 

  • Goenawan H, Hirai H (2012) Modulation of lentiviral vector tropism in cerebellar Purkinje cells in vivo by a lysosomal cysteine protease cathepsin K. J Neurovirol 18:521–531

    Article  CAS  PubMed  Google Scholar 

  • Goodrich JA, Tjian R (2010) Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet 11:549–558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hawley RG, Lieu FH, Fong AZ, Hawley TS (1994) Versatile retroviral vectors for potential use in gene therapy. Gene Ther 1:136–138

    CAS  PubMed  Google Scholar 

  • Hioki H, Kameda H, Nakamura H, Okunomiya T, Ohira K, Nakamura K, Kuroda M, Furuta T, Kaneko T (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14:872–882

    Article  CAS  PubMed  Google Scholar 

  • Hirai H (2008) Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum 7:273–278

    Article  CAS  PubMed  Google Scholar 

  • Hoser M, Baader SL, Bosl MR, Ihmer A, Wegner M, Sock E (2007) Prolonged glial expression of Sox4 in the CNS leads to architectural cerebellar defects and ataxia. J Neurosci 27:5495–5505

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Fu Q, Chen P, Zhang K, Guo D (2009) Generation of a stable mammalian cell line for simultaneous expression of multiple genes by using 2A peptide-based lentiviral vector. Biotechnol Lett 31:353–359

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gao J, Lv X, Li G, Hao D, Yao X, Zhou L, Liu D, Wang R (2010) Target gene therapy of glioma: overexpression of BAX gene under the control of both tissue-specific promoter and hypoxia-inducible element. Acta Biochim Biophys Sin (Shanghai) 42:274–280

    Article  CAS  Google Scholar 

  • Janas J, Skowronski J, Van Aelst L (2006) Lentiviral delivery of RNAi in hippocampal neurons. Methods Enzymol 406:593–605

    Article  CAS  PubMed  Google Scholar 

  • Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL (2004) Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. J Comp Neurol 472:87–99

    Article  CAS  PubMed  Google Scholar 

  • Karra D, Dahm R (2010) Transfection techniques for neuronal cells. J Neurosci 30:6171–6177

    Article  CAS  PubMed  Google Scholar 

  • Kim DG, Kang HM, Jang SK, Shin AS (1992) Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol Cell Biol 12:3636–3643

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One 6:e18556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43:37–43

    Article  PubMed  Google Scholar 

  • McIver SR, Lee CS, Lee JM, Green SH, Sands MS, Snider BJ, Goldberg MP (2005) Lentiviral transduction of murine oligodendrocytes in vivo. J Neurosci Res 82:397–403

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki J, Takaki S, Araki K, Tashiro F, Tominaga A, Takatsu K, Yamamura K (1989) Expression vector system based on the chicken beta-actin promoter directs efficient production of interleukin-5. Gene 79:269–277

    Article  CAS  PubMed  Google Scholar 

  • Moldrich RX, Dauphinot L, Laffaire J, Rossier J, Potier MC (2007) Down syndrome gene dosage imbalance on cerebellum development. Prog Neurobiol 82:87–94

    Article  CAS  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996a) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996b) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  • Oberdick J, Smeyne RJ, Mann JR, Zackson S, Morgan JI (1990) A promotor that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons. Science 248:223–225

    Article  CAS  PubMed  Google Scholar 

  • Osterfield M, Kirschner MW, Flanagan JG (2003) Graded positional information: interpretation for both fate and guidance. Cell 113:425–428

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530:391–405

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Verma IM (2001) Gene therapy: promises and problems. Annu Rev Genomics Hum Genet 2:177–211

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Kajiwara G, Iizuka A, Takayama K, Shuvaev AN, Koyama C, Hirai H (2010) High transgene expression by lentiviral vectors causes maldevelopment of Purkinje cells in vivo. Cerebellum 9:291–302

    Article  CAS  PubMed  Google Scholar 

  • Sgado P, Alberi L, Gherbassi D, Galasso SL, Ramakers GM, Alavian KN, Smidt MP, Dyck RH, Simon HH (2006) Slow progressive degeneration of nigral dopaminergic neurons in postnatal Engrailed mutant mice. Proc Natl Acad Sci USA 103:15242–15247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AD, Sumazin P, Zhang MQ (2007) Tissue-specific regulatory elements in mammalian promoters. Mol Syst Biol 3:1–8

    Google Scholar 

  • Suzuki K, Kelleher AD (2009) Transcriptional regulation by promoter targeted RNAs. Curr Top Med Chem 9:1079–1087

    Article  CAS  PubMed  Google Scholar 

  • Tabata T, Sawada S, Araki K, Bono Y, Furuya S, Kano M (2000) A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. J Neurosci Methods 104:45–53

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Torashima T, Horiuchi H, Hirai H (2008) Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neurosci Lett 443:7–11

    Article  CAS  PubMed  Google Scholar 

  • Uetsuki T, Naito A, Nagata S, Kaziro Y (1989) Isolation and characterization of the human chromosomal gene for polypeptide chain elongation factor-1 alpha. J Biol Chem 264:5791–5798

    CAS  PubMed  Google Scholar 

  • Vu TH, Hoffman AR (1994) Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 371:714–717

    Article  CAS  PubMed  Google Scholar 

  • Wagner W, McCroskery S, Hammer JA III (2011) An efficient method for the long-term and specific expression of exogenous cDNAs in cultured Purkinje neurons. J Neurosci Methods 200:95–105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wrabetz L, Shumas S, Grinspan J, Feltri ML, Bozyczko D, McMorris FA, Pleasure D, Kamholz J (1993) Analysis of the human MBP promoter in primary cultures of oligodendrocytes: positive and negative cis-acting elements in the proximal MBP promoter mediate oligodendrocyte-specific expression of MBP. J Neurosci Res 36:455–471

    Article  CAS  PubMed  Google Scholar 

  • Wrabetz L, Taveggia C, Feltri ML, Quattrini A, Awatramani R, Scherer SS, Messing A, Kamholz J (1998) A minimal human MBP promoter-lacZ transgene is appropriately regulated in developing brain and after optic enucleation, but not in shiverer mutant mice. J Neurobiol 34:10–26

    Article  CAS  PubMed  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All authors gave their informed consent prior to their inclusion in the study. We very much appreciate the excellent technical help of Stefanie Ramrath and Helma Langmann. We also are grateful to the help of Daniela Krauss and Franz Neuhalfen for providing timed pregnant mice. The MSCV promoter was kindly provided by Dr. Neumann (Institute of Reconstructive Neurobiology, University of Bonn) and the GFAP promoter by Dr. Sock (Institute of Biochemistry, University of Erlangen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan L. Baader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Zimmermann, K., Hioki, H. et al. Efficient and graded gene expression in glia and neurons of primary cerebellar cultures transduced by lentiviral vectors. Histochem Cell Biol 143, 109–121 (2015). https://doi.org/10.1007/s00418-014-1260-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1260-8

Keywords

Navigation