Skip to main content

Advertisement

Log in

Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The pathomechanism of peroxisomal biogenesis disorders (PBDs), a group of inherited autosomal recessive diseases with mutations of peroxin (PEX) genes, is not yet fully understood. Therefore, several knockout models, e.g., the PEX5 knockout mouse, have been generated exhibiting a complete loss of peroxisomal function. In this study, we wanted to knockdown PEX5 using the siRNA technology (1) to mimic milder forms of PBDs in which the mutated peroxin has some residual function and (2) to analyze the cellular consequences of a reduction of the PEX5 protein without adaption during the development as it is the case in a knockout animal. First, we tried to optimize the transfection of the hepatoma cell line HepG2 with PEX5 siRNA using different commercially available liposomal and non-liposomal transfection reagents (Lipofectamine® 2000, FuGENE 6, HiPerFect®, INTERFERin™, RiboJuice™) as well as microporation using the Neon™ Transfection system. Microporation was found to be superior to the transfection reagents with respect to the transfection efficiency (100 vs. 0–70 %), to the reduction of PEX5 mRNA (by 90 vs. 0–50 %) and PEX5 protein levels (by 70 vs. 0–50 %). Interestingly, we detected that a part of the cleaved PEX5 mRNA still existed as 3′ fragment (15 %) 24 h after microporation. Using microporation, we further analyzed whether the reduced PEX5 protein level impaired peroxisomal function. We indeed detected a reduced targeting of SKL-tagged proteins into peroxisomes as well as an increased oxidative stress as found in PBD patients and respective knockout mouse models. Knockdown of the PEX5 protein and functional consequences were at a maximum 48 h after microporation. Thereafter, the PEX5 protein was resynthesized, which may allow the temporal analysis of the loss as well as the reconstitution of peroxisomes in the future. In conclusion, we propose microporation as an efficient and reproducible method to transfect HepG2 cells with PEX5 siRNA. We succeeded to transiently knockdown PEX5 mRNA and its protein level leading to functional consequences similar as observed in peroxisome deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

Bp:

Base pairs

MEM:

Minimum Essential Medium

Neg siRNA:

Silencer™ negative control siRNA

Nt:

Nucleotide(s)

PBD:

Peroxisomal biogenesis disorder

PBS:

Phosphate-buffered saline

PEX:

Peroxin (peroxisomal biogenesis protein)

PEX5:

Human peroxisomal biogenesis factor 5 protein

PEX5 :

Human peroxisomal biogenesis factor 5 gene

PEX5 split:

PEX5 PCR primer complementary to the PEX5 siRNA cleavage site

PEX5 3′ end:

PEX5 PCR primer complementary to the 3′ fragment of the PEX5 siRNA cleavage

PTS1:

Peroxisomal targeting signal 1

PTS2:

Peroxisomal targeting signal 2

RISC:

RNA-induced silencing complex

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcriptase polymerase chain reaction

SKL:

Serine–lysine–leucine–COOH at the C-terminus

TBS:

Tris-buffered saline

TBST:

Tris-buffered saline plus 0.05 % Tween 20

References

  • Ahlemeyer B, Gottwald M, Baumgart-Vogt E (2012) Deletion of a single allele of the Pex11β gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Dis Model Mech 5:125–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ammerschlaeger M, Beigel J, Klein KU, Mueller SO (2004) Characterization of the species-specificity of peroxisome proliferators in rat and human hepatocytes. Toxicol Sci 78:229–240

    Article  PubMed  CAS  Google Scholar 

  • Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, Van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17:49–57

    Article  PubMed  CAS  Google Scholar 

  • Baumgart E, Vanhorebeek I, Grabenbauer M, Borgers M, Declercq PE, Fahimi HD, Baes M (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (Pex5 knockout mouse). Am J Pathol 159:1477–1494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Baumgart E, Fahimi HD, Steininger H, Grabenbauer M (2003) A review of morphological techniques for detection of peroxisomal (and mitochondrial) proteins and their corresponding mRNAs during ontogenesis in mice: application to the PEX5-knockout mouse with Zellweger syndrome. Microsc Res Tech 61:121–138

    Article  PubMed  CAS  Google Scholar 

  • Berg K, Selbo PK, Prasmickaite L, Tjelle TE, Sandvig K, Moan J, Gaudernack G, Fodstad O, Kjølsrud S, Anholt H, Rodal GH, Rodal SK, Høgset A (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Res 59:1180–1183

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Braverman N, Dodt G, Gould SJ, Valle D (1998) An isoform of pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum Mol Genet 7:1195–1205

    Article  PubMed  CAS  Google Scholar 

  • Byron M, Pallotta V, Brown B, Ford L (2002) Visualizing siRNA in mammalian cells: fluorescence analysis of the RNAi effect. Ambion TechNotes 9:68

    Google Scholar 

  • Dai J, Rabie AB (2007) The use of recombinant adeno-associated virus for skeletal gene therapy. Orthod Craniofac Res 10:1–14

    Article  PubMed  Google Scholar 

  • Dirkx R, Vanhorebeek I, Martens K, Schad A, Grabenbauer M, Fahimi D, Declercq P, Van Veldhoven PP, Baes M (2005) Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41:868–878

    Article  PubMed  CAS  Google Scholar 

  • Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ (1995) Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet 9:115–125

    Article  PubMed  CAS  Google Scholar 

  • Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123:1183–1189

    Article  PubMed  CAS  Google Scholar 

  • Dunne J, Drescher B, Riehle H, Hadwiger P, Young BD, Krauter J, Heidenreich O (2003) The apparent uptake of fluorescently labeled siRNAs by electroporated cells depends on the fluorochrome. Oligonucleotides 13:375–380

    Article  PubMed  CAS  Google Scholar 

  • Ebadi P, Karimi MH, Pourfathollah AA, Saheb GLA, Soheili ZS, Samiee S, Hajati S, Nadali F, Geramizadeh B, Moazzeni SM (2009) The efficiency of CD40 down regulation by siRNA and antisense ODN: comparison of lipofectamine and FuGENE6. Iran J Immunol 6:1–11

    PubMed  CAS  Google Scholar 

  • El-Andaloussi S, Lee Y, Lakhal-Littleton S, Li J, Seow Y, Gardiner C, Alvarez-Erviti L, Sargent IL, Wood MJ (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7:2112–2126

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Espeel M, Poggi F, Roels F, Saudubray J (1993) Cytoplasmic catalase but correct localization of four peroxisomal enzymes in the liver of a child with several peroxisomal dysfunctions. Eur J Cell Biol 60:74

    Google Scholar 

  • Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20

    Article  PubMed  CAS  Google Scholar 

  • Fritsch L, Martinez LA, Sekhri R, Naguibneva I, Gérard M, Vandromme M, Schaeffer L, Harel-Bellan A (2004) Conditional gene knock-down by CRE-dependent short interfering RNAs. EMBO Rep 5:178–182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gao S, Seker E, Casali M, Wang F, Bale SS, Price GM, Yarmush ML (2012) Ex vivo gene delivery to hepatocytes: techniques, challenges, and underlying mechanisms. Ann Biomed Eng 40:1851–1861

    Article  PubMed  PubMed Central  Google Scholar 

  • Grant P, Ahlemeyer B, Karnati S, Berg T, Stelzig I, Nenicu A, Kuchelmeister K, Crane DI, Baumgart-Vogt E (2013) The biogenesis protein PEX14 is an optimal marker for the morphological localization of peroxisomes in different cell types, tissues and species. Histochem Cell Biol 140:423–442

    Article  PubMed  CAS  Google Scholar 

  • Grünweller A, Gillen C, Erdmann VA, Kurreck J (2003) Cellular uptake and localization of a Cy3-labeled siRNA specific for the serine/threonine kinase Pim-1. Oligonucleotides 13:345–352

    Article  PubMed  Google Scholar 

  • Hamm A, Krott N, Breibach I, Blindt R, Bosserhoff AK (2002) Efficient transfection method for primary cells. Tissue Eng 8:235–245

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  PubMed  CAS  Google Scholar 

  • Heidel JD (2011) Cyclodextrin-containing polycations for nucleic acid delivery. Cold Spring Harb Protoc 2011:1319–1322

    PubMed  Google Scholar 

  • Hohsfield LA, Geley S, Reindl M, Humpel C (2013) The generation of NGF-secreting primary rat monocytes: a comparison of different transfer methods. J Immunol Methods 391:112–124

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jacobsen LB, Calvin SA, Colvin KE, Wright M (2004) FuGENE 6 transfection reagent: the gentle power. Methods 33:104–112

    Article  PubMed  CAS  Google Scholar 

  • Jensen SA, Day ES, Ko CH, Hurley LA, Luciano JP, Kouri FM, Merkel TJ, Luthi AJ, Patel PC, Cutler JI, Daniel WL, Scott AW, Rotz MW, Meade TJ, Giljohann DA, Mirkin CA, Stegh AH (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-Based therapy for glioblastoma. Sci Transl Med 5:209ra152

    Article  PubMed  PubMed Central  Google Scholar 

  • Judge A, MacLachlan I (2008) Overcoming the innate immune response to small interfering RNA. Hum Gene Ther 19:111–124

    Article  PubMed  CAS  Google Scholar 

  • Kandan-Kulangara F, Shah RG, el Affar B, Shah GM (2010) Persistence of different forms of transient RNAi during apoptosis in mammalian cells. PLoS One 5:e12263

    Article  PubMed  PubMed Central  Google Scholar 

  • Karnati S, Baumgart-Vogt E (2009) Peroxisomes in airway epithelia and future prospects of these organelles for pulmonary cell biology. Histochem Cell Biol 131:447–454

    Article  PubMed  CAS  Google Scholar 

  • Kawada Y, Khan M, Sharma AK, Ratnayake DB, Dobashi K, Asayama K, Moser HW, Contreras MA, Singh I (2004) Inhibition of peroxisomal functions due to oxidative imbalance induced by mistargeting of catalase to cytoplasm is restored by vitamin E treatment in skin fibroblasts from Zellweger syndrome-like patients. Mol Genet Metab 83:297–305

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kraus A, Täger J, Kohler K, Haerle M, Werdin F, Schaller HE, Sinis N (2010) Non-viral genetic transfection of rat Schwann cells with FuGENE HD© lipofection and AMAXA© nucleofection is feasible but impairs cell viability. Neuron Glia Biol 6:225–230

    Article  PubMed  Google Scholar 

  • Lefebvre B, Vandewalle B, Longue J, Moerman E, Lukowiak B, Gmyr V, Maedler K, Kerr-conte J, Pattou F (2010) Efficient gene delivery and silencing of mouse and human pancreatic islets. BMC Biotechnol 10:28–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Marucci G, Lammi C, Buccioni M, Dal Ben D, Lambertucci C, Amantini C, Santoni G, Kandhavelu M, Abbracchio MP, Lecca D, Volpini R, Cristalli G (2011) Comparison and optimization of transient transfection methods at human astrocytoma cell line 1321N1. Anal Biochem 414:300–302

    Article  PubMed  CAS  Google Scholar 

  • Nguyen T, Bjorkman J, Paton BC, Crane DI (2006) Failure of microtubule-mediated peroxisome division and trafficking in disorders with reduced peroxisome abundance. J Cell Sci 119:636–645

    Article  PubMed  CAS  Google Scholar 

  • Orban TI, Izaurralde E (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11:459–469

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Otera H, Harano T, Honsho M, Ghaedi K, Mukai S, Tanaka A, Kawai A, Shimizu N, Fujiki Y (2000) The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p-PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J Biol Chem 275:21703–21714

    Article  PubMed  CAS  Google Scholar 

  • Pampinella F, Lechardeur D, Zanetti E, MacLachlan I, Benharouga M, Lukacs GL, Vitiello L (2002) Analysis of differential lipofection efficiency in primary and established myoblasts. Mol Ther 5:161–169

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Petriv OI, Pilgrim DB, Rachubinski RA, Titorenko VI (2002) RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders. Physiol Genomics 10:79–91

    PubMed  CAS  Google Scholar 

  • Pujol A, Hindelang C, Callizot N, Bartsch U, Schachner M, Mandel JL (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum Mol Genet 11:499–505

    Article  PubMed  CAS  Google Scholar 

  • Rabie AB, Dai J, Xu R (2007) Recombinant AAV-mediated VEGF gene therapy induces mandibular condylar growth. Gene Ther 14:972–980

    Article  PubMed  CAS  Google Scholar 

  • Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759

    Article  PubMed  CAS  Google Scholar 

  • Rizk A, Rabie BM (2013) Electroporation for transfection and differentiation of dental pulp stem cells. Biores Open Access 2:155–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinberg SJ, Dodt G, Raymond GV, Braverman NE, Moser AB, Moser HW (2006) Peroxisome biogenesis disorders. Biochim Biophys Acta 1763:1733–1748

    Article  PubMed  CAS  Google Scholar 

  • Stier H, Fahimi HD, Van Veldhoven PP, Mannaerts GP, Völkl A, Baumgart E (1998) Maturation of peroxisomes in differentiating human hepatoblastoma cells (HepG2): possible involvement of the peroxisome proliferator-activated receptor alpha (PPAR alpha). Differentiation 64:55–66

    Article  PubMed  CAS  Google Scholar 

  • Subramanian A, Ranganathan P, Diamond SL (1999) Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 17:873–877

    Article  PubMed  CAS  Google Scholar 

  • Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  PubMed  CAS  Google Scholar 

  • Tietz SM, Berghoff M (2012) Gene silencing of MK2 in hard-to-transfect human U937 cells. Biomol Tech 23:47–50

    Article  CAS  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004) A protein sensor for siRNA asymmetry. Science 306:1377–1380

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T, Hirayama F, Uekama K, Arima H (2007) Evaluation of polyamidoamine dendrimer/alpha-cyclodextrin conjugate (generation 3, G3) as a novel carrier for small interfering RNA (siRNA). J Control Release 119:349–359

    Article  PubMed  CAS  Google Scholar 

  • Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20:515–524

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M (2013) Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 65C:882–894

    Article  Google Scholar 

  • Yalvac ME, Ramazanoglu M, Gumru OZ, Sahin F, Palotás A, Rizvanov AA (2009) Comparison and optimisation of transfection of human dental follicle cells, a novel source of stem cells, with different chemical methods and electroporation. Neurochem Res 34:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Yamano S, Dai J, Moursi AM (2010) Comparison of transfection efficiency of nonviral gene transfer reagents. Mol Biotechnol 46:287–300

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Wang X, Zhang Y, Hu X, Deng X, Fei J, Li N (2006) shRNA transcribed by RNA Pol II promoter induce RNA interference in mammalian cell. Mol Biol Rep 33:43–49

    Article  PubMed  CAS  Google Scholar 

  • Zeitelhofer M, Karra D, Vessey JP, Jaskic E, Macchi P, Thomas S, Riefler J, Kiebler M, Dahm R (2009) High-efficiency transfection of short hairpin RNAs-encoding plasmids into primary hippocampal neurons. J Neurosci Res 87:289–300

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Zheng N, Zhou P (2003) Exploring the functional complexity of cellular proteins by protein knockout. Proc Natl Acad Sci USA 100:14127–14132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Georg Lüers, Saba Hadad and Srikanth Karnati for their recommendation to use the Neon™ Transfection System as well as Gabriele Thiele and Andrea Textor for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Ahlemeyer or Eveline Baumgart-Vogt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahlemeyer, B., Vogt, JF., Michel, V. et al. Microporation is an efficient method for siRNA-induced knockdown of PEX5 in HepG2 cells: evaluation of the transfection efficiency, the PEX5 mRNA and protein levels and induction of peroxisomal deficiency. Histochem Cell Biol 142, 577–591 (2014). https://doi.org/10.1007/s00418-014-1254-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-014-1254-6

Keywords

Navigation