Skip to main content
Log in

In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The recruitment of satellite cells, which are located between the basement membrane and the plasma membrane in myofibers, is required for myofiber repair after muscle injury or disease. In particular, satellite cell migration has been focused on as a satellite cell response to muscle injury because satellite cell motility has been revealed in cell culture. On the other hand, in situ, it is poorly understood how satellite cell migration is involved in muscle regeneration after injury because in situ it has been technically very difficult to visualize living satellite cells localized within skeletal muscle. In the present study, using quantum dots conjugated to anti-M-cadherin antibody, we attempted the visualization of satellite cells in both intact and injured skeletal muscle of rat in situ. As a result, the present study is the first to demonstrate in situ real-time imaging of satellite cells localized within the skeletal muscle. Moreover, it was indicated that satellite cell migration toward an injured site was induced in injured muscle while spatiotemporal change in satellite cells did not occur in intact muscle. Thus, it was suggested that the satellite cell migration may play important roles in the regulation of muscle regeneration after injury. Moreover, the new method used in the present study will be a useful tool to develop satellite cell-based therapies for muscle injury or disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen RE, Sheehan SM, Taylor RG, Kendall TL, Rice GM (1995) Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol 165:307–312

    Article  CAS  PubMed  Google Scholar 

  • Anderson J, Pilipowicz O (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide 7:36–41

    Article  CAS  PubMed  Google Scholar 

  • Barbero A, Benelli R, Minghelli S, Tosetti F, Dorcaratto A, Ponzetto C, Wernig A, Cullen MJ, Albini A, Noonan DM (2001) Growth factor supplemented matrigel improves ectopic skeletal muscle formation—a cell therapy approach. J Cell Physiol 186:183–192

    Article  CAS  PubMed  Google Scholar 

  • Bassaglia Y, Gautron J (1995) Fast and slow rat muscles degenerate and regenerate differently after whole crush injury. J Muscle Res Cell Motil 16:420–429

    Article  CAS  PubMed  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208:505–515

    Article  CAS  PubMed  Google Scholar 

  • Bornemann A, Schmalbruch H (1994) Immunocytochemistry of M-cadherin in mature and regenerating rat muscle. Anat Rec 239:119–125

    Article  CAS  PubMed  Google Scholar 

  • Chambers RL, McDermott JC (1996) Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21:155–184

    CAS  PubMed  Google Scholar 

  • Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 3:337–341

    Article  PubMed  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    Article  CAS  PubMed  Google Scholar 

  • El Fahime E, Torrente Y, Caron NJ, Bresolin MD, Tremblay JP (2000) In vivo migration of transplanted myoblasts requires matrix metalloproteinase activity. Exp Cell Res 258:279–287

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Yang L, Petros JA, Marshall FF, Simons JW, Nie S (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16:63–72

    Article  CAS  PubMed  Google Scholar 

  • Gonda K, Watanabe TM, Ohuchi N, Higuchi H (2010) In vivo nano-imaging of membrane dynamics in metastatic tumor cells using quantum dots. J Biol Chem 285:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    CAS  PubMed  Google Scholar 

  • Jockusch H, Voigt S (2003) Migration of adult myogenic precursor cells as revealed by GFP/nLacZ labelling of mouse transplantation chimeras. J Cell Sci 116:1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T (2004) N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J Biol Chem 279:54862–54871

    Article  CAS  PubMed  Google Scholar 

  • Klein-Ogus C, Harris JB (1983) Preliminary observations of satellite cells in undamaged fibres of the rat soleus muscle assaulted by a snake-venom toxin. Cell Tissue Res 230:671–676

    Article  CAS  PubMed  Google Scholar 

  • Kosaka N, Ogawa M, Sato N, Choyke PL, Kobayashi H (2009) In vivo real-time, multicolor, quantum dot lymphatic imaging. J Invest Dermatol 129:2818–2822

    Article  CAS  PubMed  Google Scholar 

  • Maltin CA, Harris JB, Cullen MJ (1983) Regeneration of mammalian skeletal muscle following the injection of the snake-venom toxin, taipoxin. Cell Tissue Res 232:565–577

    Article  CAS  PubMed  Google Scholar 

  • Nelson SR, Ali MY, Trybus KM, Warshaw DM (2009) Random walk of processive, quantum dot-labeled myosin Va molecules within the actin cortex of COS-7 cells. Biophys J 97:509–518

    Article  CAS  PubMed  Google Scholar 

  • Olson EN (1992) Interplay between proliferation and differentiation within the myogenic lineage. Dev Biol 154:261–272

    Article  CAS  PubMed  Google Scholar 

  • Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179

    Article  CAS  PubMed  Google Scholar 

  • Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222

    Article  CAS  PubMed  Google Scholar 

  • Schultz E, Albright DJ, Jaryszak DL, David TL (1988) Survival of satellite cells in whole muscle transplants. Anat Rec 222:12–17

    Article  CAS  PubMed  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DDW (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    Article  CAS  PubMed  Google Scholar 

  • Tada H, Higuchi H, Wanatabe TM, Ohuchi N (2007) In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice. Cancer Res 67:1138–1144

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128

    Article  CAS  PubMed  Google Scholar 

  • Villena J, Brandan E (2004) Dermatan sulfate exerts an enhanced growth factor response on skeletal muscle satellite cell proliferation and migration. J Cell Physiol 198:169–178

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Pan H, Murray K, Jefferson BS, Li Y (2009) Matrix metalloproteinase-1 promotes muscle cell migration and differentiation. Am J Pathol 174:541–549

    Article  CAS  PubMed  Google Scholar 

  • Watt DJ, Karasinski J, Moss J, England MA (1994) Migration of muscle cells. Nature 368:406–407

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Kambara T, Gonda K, Higuchi H (2008) Intracellular imaging of targeted proteins labeled with quantum dots. Exp Cell Res 314:3563–3569

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Scholer HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST) and by Grants-in-Aid for Scientific Research (Project No. 21300236, N.K., H.T. and S.M.) from the Japan society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minenori Ishido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishido, M., Kasuga, N. In situ real-time imaging of the satellite cells in rat intact and injured soleus muscles using quantum dots. Histochem Cell Biol 135, 21–26 (2011). https://doi.org/10.1007/s00418-010-0767-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-010-0767-x

Keywords

Navigation