Skip to main content

Advertisement

Log in

High-intensity focused ultrasound treatment in patients with refractory glaucoma

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the safety and efficacy of ultrasound coagulation of the ciliary body in refractory glaucoma.

Methods

This prospective multicenter interventional study was conducted in two Italian university-affiliated glaucoma centers: St. Orsola-Malpighi Teaching Hospital (Bologna, Italy) and University Eye Clinic of Genoa (Genoa, Italy). The main inclusion criterion was the diagnosis of glaucoma with a baseline intraocular pressure (IOP) ≥ 21 mmHg while on maximum topical and systemic medical hypotensive treatment. The EyeOP1 device (Eye Tech Care, Rillieux-la-Pape, France), which was employed in the study, uses miniaturized transducers to produce high-intensity focused ultrasound (HIFU). Treatment consisted of the sequential activation of each transducer lasting 4 s (group 1), 6 s (group 2) or 8 s (group 3). Hypotensive medications were interrupted after surgery and then prescribed only if postoperative IOP was ≥ 21 mmHg during follow-up visits. Patients were assessed before and 1, 7, 14, 30, 90 and 180 days after the procedure. Primary outcomes were the mean IOP reduction in the overall population and in groups 1, 2 and 3, and the rates of complete success, qualified success and failure.

Results

Thirty eyes (16 open-angle, 10 angle-closure and 4 neovascular glaucoma) of 30 patients were included. The mean preoperative IOP was 30.1 ± 10.5 mmHg. Twenty-nine patients completed the entire study follow-up; one patient exited from the study 3 months after HIFU and underwent trabeculectomy. At days 1 and 180, the mean IOP was significantly reduced (18.4 ± 7.2 and 20.2 ± 6.2 mmHg, respectively; all p < 0.0001). Group 3 patients (8-s ultrasound exposure time) showed a greater IOP reduction than the other two groups (−16.2 ± 8.3 for group 3 vs. −8.8 ± 6.6 for group 2 and −3.7 ± 6.5 for group 1; p = 0.02 and p < 0.001, respectively). Qualified and complete success was achieved in 23.3 and 46.7% of patients, respectively; treatment failure was recorded in 6.6%.

Conclusions

Ultrasonic coagulation of the ciliary body is a safe and effective procedure for reducing IOP in refractory glaucoma. The increase in ultrasound exposure time appears to improve the response rate and the global efficacy of the procedure, with no detrimental effect on safety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Traverso CE, Walt JG, Kelly SP, Hommer AH, Bron AM, Denis P et al (2005) Direct costs of glaucoma and severity of the disease: a multinational long term study of resource utilisation in Europe. Br J Ophthalmol 89:1245–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. European Glaucoma Society (2014) Terminology and guidelines for glaucoma. In: EGS Guidelines, 4th edn. Dogma Srl, Savona Italy, pp 139–169

    Google Scholar 

  3. De Roetth A Jr (1965) Cryosurgery for the treatment of glaucoma. Trans Am Ophthalmol Soc 63:189–204

    PubMed  PubMed Central  Google Scholar 

  4. Maus M, Katz LJ (1990) Choroidal detachment, flat anterior chamber, and hypotony as complications of neodymium: YAG laser cyclophotocoagulation. Ophthalmology 97:69–72

    Article  CAS  PubMed  Google Scholar 

  5. Uram M (1992) Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma. Ophthalmology 99:1823–1828

    Article  CAS  PubMed  Google Scholar 

  6. Al-Ghamdi S, Al-Obeidan S, Tomey KF, Al-Jadaan I (1993) Transscleral neodymium:YAG laser cyclophotocoagulation for end-stage glaucoma, refractory glaucoma, and painful blind eyes. Ophthalmic Surg 24:526–529

    CAS  PubMed  Google Scholar 

  7. Kosoko O, Gaasterland DE, Pollack IP, Enger CL (1996) Long-term outcome of initial ciliary ablation with contact diode laser transscleral cyclophotocoagulation for severe glaucoma. The Diode Laser Ciliary Ablation Study Group. Ophthalmology 103:1294–1302

    Article  CAS  PubMed  Google Scholar 

  8. Hamard P, Gayraud JM, Kopel J, Valtot F, Quesnot S, Hamard H (1997) Treatment of refractory glaucomas by transscleral cyclophotocoagulation using semiconductor diode laser. Analysis of 50 patients followed-up over 19 months. J Fr Ophthalmol 20:125–133

    CAS  Google Scholar 

  9. Sabri K, Vernon SA (1999) Scleral perforation following trans-scleral cyclodiode. Br J Ophthalmol 83:502–503

    Article  CAS  PubMed  Google Scholar 

  10. Vernon SA, Koppens JM, Menon GJ, Negi AK (2006) Diode laser cycloablation in adult glaucoma: long-term results of a standard protocol and review of current literature. Clin Experiment Ophthalmol 34:411–420

    Article  PubMed  Google Scholar 

  11. Aptel F, Charrel T, Palazzi X, Chapelon JY, Denis P, Lafon C (2010) Histologic effects of a new device for high-intensity focused ultrasound cyclocoagulation. Invest Ophthalmol Vis Sci 51:5092–5098. doi:10.1167/iovs.09-5135

    Article  PubMed  Google Scholar 

  12. Aptel F, Charrel T, Lafon C, Romano F, Chapelon JY, Blumen-Ohana E et al (2011) Miniaturized high-intensity focused ultrasound device in patients with glaucoma: a clinical pilot study. Invest Ophthalmol Vis Sci 52:8747–8753. doi:10.1167/iovs.11-8137

    Article  PubMed  Google Scholar 

  13. Aptel F, Dupuy C, Rouland JF (2014) Treatment of refractory open-angle glaucoma using ultrasonic circular cyclocoagulation: a prospective case series. Curr Med Res Opin 30:1599–1605. doi:10.1185/03007995.2014.910509

    Article  CAS  PubMed  Google Scholar 

  14. Aptel F, Béglé A, Razavi A, Romano F, Charrel T, Chapelon JY et al (2014) Short- and long-term effects on the ciliary body and the aqueous outflow pathways of high-intensity focused ultrasound cyclocoagulation. Ultrasound Med Biol 40:2096–2106. doi:10.1016/j.ultrasmedbio.2014.04.017

    Article  PubMed  Google Scholar 

  15. Charrel T, Aptel F, Birer A, Chavrier F, Romano F, Chapelon JY et al (2011) Development of a miniaturized HIFU device for glaucoma treatment with conformal coagulation of the ciliary bodies. Ultrasound Med Biol 37:742–754. doi:10.1016/j.ultrasmedbio.2011.01.017

    Article  PubMed  Google Scholar 

  16. Aptel F, Lafon C (2012) Therapeutic applications of ultrasound in ophthalmology. Int J Hyperthermia 28:405–418. doi:10.3109/02656736.2012.665566

    Article  CAS  PubMed  Google Scholar 

  17. Denis P, Aptel F, Rouland J-F, Nordmann J-P, Lachkar Y, Renard J-P et al (2015) Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: a 12-month multicenter study. Invest Ophthalmol Vis Sci 56:1089–1096. doi:10.1167/iovs.14-14973

    Article  PubMed  Google Scholar 

  18. Mastropasqua R, Agnifili L, Fasanella V, Toto L, Brescia L, Di Staso S et al (2016) Uveo-scleral outflow pathways after ultrasonic cyclocoagulation in refractory glaucoma: an anterior segment optical coherence tomography and in vivo confocal study. Br J Ophthalmol. doi:10.1136/bjophthalmol-2015-308069

    Google Scholar 

  19. Melamed S, Goldenfeld M, Cotlear D, Skaat A, Moroz I (2015) High-intensity focused ultrasound treatment in refractory glaucoma patients: results at 1 year of prospective clinical study. Eur J Ophthalmol 25:483–489. doi:10.5301/ejo.5000620

    Article  PubMed  Google Scholar 

  20. Aptel F, Denis P, Rouland JF, Renard JP, Bron A (2016) Multicenter clinical trial of high-intensity focused ultrasound treatment in glaucoma patients without previous filtering surgery. Acta Ophthalmol 94:e268–277. doi:10.1111/aos.12913

    Article  PubMed  Google Scholar 

  21. Coleman DJ, Lizzi FL, Driller J, Rosado AL, Burgess SE, Torpey JH et al (1985) Therapeutic ultrasound in the treatment of glaucoma. II. Clinical applications. Ophthalmology 92:347–353

    Article  CAS  PubMed  Google Scholar 

  22. Valtot F, Kopel J, Haut J (1989) Treatment of glaucoma with high intensity focused ultrasound. Int Ophthalmol 13:167–170

    Article  CAS  PubMed  Google Scholar 

  23. Burgess SE, Silverman RH, Coleman DJ, Yablonski ME, Lizzi FL, Driller J et al (1986) Treatment of glaucoma with high-intensity focused ultrasound. Ophthalmology 93:831–838

    Article  CAS  PubMed  Google Scholar 

  24. Yip LW, Yong SO, Earnest A, Ji J, Lim BA (2009) Endoscopic cyclophotocoagulation for the treatment of glaucoma: an Asian experience. Clin Experiment Ophthalmol 37:692–697

    Article  PubMed  Google Scholar 

  25. Lima FE, Beniz Neto J, Toscano D, Carvalho DM, Avila MP (2009) Endoscopic cyclophotocoagulation in refractory glaucomas: a long term study. Rev Bras Oftalmol 68:146–151

    Article  Google Scholar 

  26. Murthy GJ, Murthy PR, Murthy KR, Kulkarni VV, Murthy KR (2009) A study of the efficacy of endoscopic cyclophotocoagulation for the treatment of refractory glaucomas. Indian J Ophthalmol 57:127–132

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen J, Cohn RA, Lin SC, Cortes AE, Alvarado JA (1997) Endoscopic photocoagulation of the ciliary body for treatment of refractory glaucomas. Am J Ophthalmol 124:787–796

    Article  CAS  PubMed  Google Scholar 

  28. Egbert PR, Fiadoyor S, Budenz DL, Dadzie P, Byrd S (2001) Diode laser transscleral cyclophotocoagulation as a primary surgical treatment for primary open-angle glaucoma. Arch Ophthalmol 119:345–350

    Article  CAS  PubMed  Google Scholar 

  29. Gupta V, Agarwal HC (2000) Contact trans-scleral diode laser cyclophotocoagulation treatment for refractory glaucomas in the Indian population. Indian J Ophthalmol 48:295–300

    CAS  PubMed  Google Scholar 

  30. Nabili S, Kirkness CN (2004) Trans-scleral diode laser cyclophoto-coagulation in the treatment of diabetic neovascular glaucoma. Eye 18:352–356

    Article  CAS  PubMed  Google Scholar 

  31. Iliev ME, Gerber S (2007) Long-term outcome of trans-scleral diode laser cyclo-photocoagulation in refractory glaucoma. Br J Ophthalmol 91:1631–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tan AM, Chockalingam M, Aquino MC, Lim ZI, See JL, Chew PT (2010) Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Experiment Ophthalmol 38:266–272

    PubMed  Google Scholar 

  33. Kuchar S, Moster MR, Reamer CB, Waisbourd M (2016) Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci 31:393–396

    Article  PubMed  Google Scholar 

  34. Supuran CT (2010) Carbonic anhydrase inhibitors. Bioorg Med Chem Lett 20:3467–3474. doi:10.1016/j.bmcl.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  35. Fraunfelder FT, Bagby GC (2000) Monitoring patients taking oral carbonic anhydrase inhibitors. Am J Ophthalmol 130:221–223

    Article  CAS  PubMed  Google Scholar 

  36. Gilmour KM (2010) Perspectives on carbonic anhydrase. Comp Biochem Physiol A Mol Integr Physiol 157:193–197. doi:10.1016/j.cbpa.2010.06.161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Ada Dormi, Math.ST, Statistical Service, DIMEC, University of Bologna, for her skillful assistance with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Giannaccare.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements) or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giannaccare, G., Vagge, A., Gizzi, C. et al. High-intensity focused ultrasound treatment in patients with refractory glaucoma. Graefes Arch Clin Exp Ophthalmol 255, 599–605 (2017). https://doi.org/10.1007/s00417-016-3563-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3563-z

Keywords

Navigation