Skip to main content

Advertisement

Log in

Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology

  • Review Article
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

The pathophysiology of diabetic macular edema (DME) is multifactorial and partly still unknown. An increasing body of evidence suggests that neurodegeneration and retinal glial cells activation occur even before the earliest clinical manifestation of diabetic retinal vasculopathy. Nowadays, new non-invasive techniques are available to assess and characterize DME, not only in a quantitative perspective, but also making it possible to understand and quantify the pathogenic processes sustaining fluid accumulation. Optical coherence tomography (OCT) allows documenting not only parameters such as macular volume, central and sectorial retinal thickness, fluid localization, and integrity of retinal layers, but also new still poorly investigated reflectivity aspects. Hyperreflective intraretinal spots (HRS) have been detected on OCT scans through the retinal layers, with a presumptive migration pattern towards the external layers during the occurrence of diabetic retinopathy and DME. These HRS have been hypothesised to represent an in-vivo marker of microglial activation. Autofluorescence of the fundus (FAF) also offers a non-invasive imaging technique of DME. The area of increased FAF correlates with the presence of intraretinal fluid and probably retinal glial activation. Microperimetry allows the measurement of retinal sensitivity by testing specific selected retinal areas. Some studies have shown that increased macular FAF in DME correlates better with visual function assessed with microperimetry than with visual acuity, showing that new imaging and functional techniques may help to elucidate DME pathogenesis and to target therapeutical strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Diabetes Federation (2015) IDF diabetes atlas, 7th edn. International Diabetes Federation, Brussels

    Google Scholar 

  2. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  3. Shamoon H (1992) Paphysiology of diabetes. A review of selected recent developments and their impact on treatment. Drugs 3:1–12

    Article  Google Scholar 

  4. Das A, McGuire PG, Rangasamy S (2015) Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology 122:1375–1394. doi:10.1016/j.ophtha.2015.03.024

    Article  PubMed  Google Scholar 

  5. Aiello LP, DCCT/EDIC Research Group (2014) Diabetic retinopathy and other ocular findings in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study. Diabetes Care 37:17–23

    Article  CAS  PubMed  Google Scholar 

  6. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G476

    CAS  PubMed  Google Scholar 

  7. Antonetti DA, Barber AJ, Khin S, Lieth E, Tarbell JM, Gardner TW (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes 47:1953–1959

    Article  CAS  PubMed  Google Scholar 

  8. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  CAS  PubMed  Google Scholar 

  9. Simó R, Hernández C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab 25:23–33. doi:10.1016/j.tem.2013.09.005

    Article  PubMed  Google Scholar 

  10. Hee MR, Puliafito CA, Wong C et al (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113:1019–1029

    Article  CAS  PubMed  Google Scholar 

  11. Strøm C, Sander B, Larsen N, Larsen M, Lund-Andersen H (2002) Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 43:241–245

    PubMed  Google Scholar 

  12. Novtny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24:28–86

    Google Scholar 

  13. Kwan AS, Barry C, McAllister IL, Constable I (2006) Fluorescein angiography and adverse drug reactions revisited: the Lions Eye experience. Clin Exp Ophthalmol 34:33–38

    Article  Google Scholar 

  14. Vujosevic S, Midena E (2013) Retinal layers changes in human preclinical and early clinical diabetic retinopathy support early retinal neuronal and Müller cells alterations. J Diabetes Res 2013:905058. doi:10.1155/2013/905058

    PubMed  PubMed Central  Google Scholar 

  15. Murakami T, Yoshimura N (2013) Structural changes in individual retinal layers in diabetic macular edema. J Diabetes Res 2013:920713

    Article  PubMed  PubMed Central  Google Scholar 

  16. Diabetic Retinopathy Clinical Research Network, Browning DJ, Glassman AR, Aiello LP et al (2007) Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 114:525–536

    Article  Google Scholar 

  17. Vujosevic S, Casciano M, Pilotto E, Boccassini B, Varano M, Midena E (2011) Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci 52:442–448. doi:10.1167/iovs.10-5588

    Article  PubMed  Google Scholar 

  18. Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C (2009) Diabetic Retinopathy Research Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920. doi:10.1016/j.ophtha.2008.12.039

    Article  PubMed  Google Scholar 

  19. Ota M, Nishijima K, Sakamoto A et al (2010) Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology 117:1996–2002. doi:10.1016/j.ophtha.2010.06.019

    Article  PubMed  Google Scholar 

  20. Ogino K, Murakami T, Tsujikawa A et al (2012) Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina 32:77–85

    Article  PubMed  Google Scholar 

  21. Vujosevic S, Bini S, Midena G, Berton M, Pilotto E, Midena E (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835. doi:10.1155/2013/491835

    PubMed  PubMed Central  Google Scholar 

  22. Joussen AM, Poulaki V, Le ML et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452

    CAS  PubMed  Google Scholar 

  23. Ibrahim AS, El-Remessy AB, Matragoon S et al (2011) Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60:1122–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng H-Y, Green WR, Tso MO (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126:227–232. doi:10.1001/archophthalmol.2007.65

    Article  PubMed  Google Scholar 

  25. Coscas G, De Benedetto U, Coscas F et al (2013) Hyperreflective dots: a new spectral-domain optical coherence tomography entity for follow-up and prognosis in exudative age-related macular degeneration. Ophthalmologica 229:32–37. doi:10.1159/000342159

    Article  PubMed  Google Scholar 

  26. Turgut B, Yildirim H (2015) The causes of hyperreflective dots in optical coherence tomography excluding diabetic macular edema and retinal venous occlusion. Open Ophthalmol J 9:36–40. doi:10.2174/1874364101509010036

    Article  PubMed  PubMed Central  Google Scholar 

  27. Uji A, Murakami T, Nishijima K et al (2012) Association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol 153:710–717. doi:10.1016/j.ajo.2011.08.041

    Article  PubMed  Google Scholar 

  28. Spaide RF, Curcio CA (2011) Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina 31:1609–1619. doi:10.1097/IAE.0b013e3182247535

    Article  PubMed  PubMed Central  Google Scholar 

  29. Staurenghi G, Sadda S, Chakravarthy U, Spaide RF, International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology 121:1572–1578

    Article  PubMed  Google Scholar 

  30. Querques G, Bux AV, Martinelli D, Iaculli C, Noci ND (2009) Intravitreal pegaptanib sodium (Macugen) for diabetic macular oedema. Acta Ophthalmol 87:623–630

    Article  CAS  PubMed  Google Scholar 

  31. Sakamoto A, Nishijima K, Kita M, Oh H, Tsujikawa A, Yoshimura N (2009) Association between foveal photoreceptor status and visual acuity after resolution of diabetic macular edema by pars plana vitrectomy. Graefes Arch Clin Exp Ophthalmol 247:1325–1330

    Article  PubMed  Google Scholar 

  32. Alasil T, Keane PA, Updike JF et al (2010) Relationship between optical coherence tomography retinal parameters and visual acuity in diabetic macular edema. Ophthalmology 117:2379–2386

    Article  PubMed  Google Scholar 

  33. Forooghian F, Stetson PF, Meyer SA et al (2010) Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema. Retina 30:63–70. doi:10.1097/IAE.0b013e3181bd2c5a

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maheshwary AS, Oster SF, Yuson RMS, Cheng L, Mojana F, Freeman WR (2010) The association between percent disruption of the photoreceptor inner segment–outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol 150:63.e1–67.e1. doi:10.1016/j.ajo.2010.01.039

    Article  Google Scholar 

  35. Otani T, Yamaguchi Y, Kishi S (2010) Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina 30:774–780. doi:10.1097/IAE.0b013e3181c2e0d6

    Article  PubMed  Google Scholar 

  36. Yanyali A, Bozkurt KT, Macin A, Horozoglu F, Nohutcu AF (2011) Quantitative assessment of photoreceptor layer in eyes with resolved edema after pars plana vitrectomy with internal limiting membrane removal for diabetic macular edema. Ophthalmologica 226:57–63. doi:10.1159/000327597

    Article  PubMed  Google Scholar 

  37. Murakami T, Nishijima K, Akagi T et al (2012) Optical coherence tomographic reflectivity of photoreceptors beneath cystoid spaces in diabetic macular edema. Invest Ophthalmol Vis Sci 53:1506–1511. doi:10.1167/iovs.11-9231

    Article  PubMed  Google Scholar 

  38. Shin HJ, Lee SH, Chung H, Kim HC (2012) Association between photoreceptor integrity and visualoutcome in diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 250:61–70. doi:10.1016/j.ophtha.2011.11.018

    Article  PubMed  Google Scholar 

  39. Murakami T, Nishijima K, Sakamoto A, Ota M, Horii T, Yoshimura N (2011) Association of pathomorphology, photoreceptor status, and retinal thickness with visual acuity in diabetic retinopathy. Am J Ophthalmol 151:310–317. doi:10.1016/j.ajo.2010.08.022

    Article  PubMed  Google Scholar 

  40. Bunt-Milam AH, Saari JC, Klock IB, Garwin GG (1985) Zonulae adherentes pore size in the external limiting membrane of the rabbit retina. Invest Ophthalmol Vis Sci 26:1377–1380

    CAS  PubMed  Google Scholar 

  41. Marmor MF (1999) Mechanisms of fluid accumulation in retinal edema. Doc Ophthalmol 97:239–249

    Article  CAS  PubMed  Google Scholar 

  42. Sonoda S, Sakamoto T, Shirasawa M, Yamashita T, Otsuka H, Terasaki H (2013) Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema. Invest Ophthalmol Vis Sci 54:5367–5374. doi:10.1167/iovs.13-12382

    Article  CAS  PubMed  Google Scholar 

  43. Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Sonoda Y (2014) Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina 34:741–748. doi:10.1097/IAE.0b013e3182a48917

    Article  CAS  PubMed  Google Scholar 

  44. Shimura M, Yasuda K, Nakazawa T et al (2011) Visual outcome after intravitreal triamcinolone acetonide depends on optical coherence tomographic patterns in patients with diffuse diabetic macular edema. Retina 31:748–754. doi:10.1097/IAE.0b013e3181f04991

    Article  PubMed  Google Scholar 

  45. Horii T, Murakami T, Nishijima K et al (2012) Relationship between fluorescein pooling and optical coherence tomographic reflectivity of cystoid spaces in diabetic macular edema. Ophthalmology 119:1047–1055. doi:10.1016/j.ophtha.2011.10.030

    Article  PubMed  Google Scholar 

  46. Horii T, Murakami T, Akagi T et al (2015) Optical coherence tomographic reflectivity of cystoid spaces is related to recurrent diabetic macular edema after triamcinolone. Retina 35:264–271. doi:10.1097/IAE.0000000000000282

    Article  CAS  PubMed  Google Scholar 

  47. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409. doi:10.1097/IAE.0b013e318164a907

    Article  PubMed  Google Scholar 

  48. Xu H, Chen M, Manivannan A, Lois N, Forrester JV (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68

    Article  CAS  PubMed  Google Scholar 

  49. Bessho K, Gomi F, Harino S et al (2009) Macular autofluorescence in eyes with cystoid macula edema, detected with 488 nm-excitation but not with 580 nm-excitation. Graefes Arch Clin Exp Ophthalmol 247:729–734. doi:10.1007/s00417-008-1033-y

    Article  PubMed  Google Scholar 

  50. Pece A, Isola V, Holz F, Milani P, Brancato R (2010) Autofluorescence imaging of cystoid macular edema in diabetic retinopathy. Ophthalmologica 224:230–235. doi:10.1159/000260229

    Article  PubMed  Google Scholar 

  51. Shen Y, Xu X, Liu K (2014) Fundus autofluorescenze characteristics in patients with diabetic macular edema. Chin Med J (Engl) 127:1423–1428

    Google Scholar 

  52. Vujosevic S, Bottega E, Casciano M, Benetti E, Pilotto E, Midena E (2009) Fundus autofluorescence changes after treatment for cystoid diabetic macular edema. Invest Ophthalmol Vis Sci 50:1377

  53. Chung H, Park B, Shin HJ, Kim HC (2012) Correlation of fundus autofluorescence with spectral-domain optical coherence tomography and vision in diabetic macular edema. Ophthalmology 119:1056–1065. doi:10.1016/j.ophtha.2011.11.018

    Article  PubMed  Google Scholar 

  54. Yoshitake S, Murakami T, Horii T et al (2014) Qualitative and quantitative characteristics of near-infrared autofluorescence in diabetic macular edema. Ophthalmology 121:1036–1044. doi:10.1016/j.ophtha.2013.11.033

    Article  PubMed  Google Scholar 

  55. Kube T, Schmidt S, Toonen F, Kirchhof B, Wolf S (2005) Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope. Ophthalmologica 219:16–20

    Article  PubMed  Google Scholar 

  56. Vujosevic S, Midena E, Pilotto E, Radin PP, Chiesa L, Cavarzeran F (2006) Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. Invest Ophthalmol Vis Sci 47:3044–3051

    Article  PubMed  Google Scholar 

  57. Okada K, Yamamoto S, Mizunoya S, Hoshino A, Arai M, Takatsuna Y (2006) Correlation of retinal sensitivity measured with fundus-related microperimetry to visual acuity and retinal thickness in eyes with diabetic macular edema. Eye (Lond) 20:805–809

    Article  CAS  Google Scholar 

  58. Vujosevic S, Bottega E, Casciano M, Pilotto E, Convento E, Midena E (2010) Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina 30:908–916. doi:10.1097/IAE.0b013e3181c96986

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The contribution of the GB Bietti Foundation, IRCCS, has been supported by the Ministry of Health and Fondazione Roma

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Midena.

Ethics declarations

Funding

No funding was received for this research.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midena, E., Bini, S. Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology. Graefes Arch Clin Exp Ophthalmol 254, 1661–1668 (2016). https://doi.org/10.1007/s00417-016-3361-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-016-3361-7

Keywords

Navigation