Skip to main content

Advertisement

Log in

Structural and functional changes in corneal innervation after laser in situ keratomileusis and their relationship with dry eye

  • Refractive Surgery
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The most likely etiology of post-LASIK dry eye is corneal nerve damage; however, no direct relationship between post-LASIK dry eye symptoms and nerve damage has been established, and limited information is available about the relationship between dry eye signs and corneal reinnervation after LASIK. Tear neuropeptides (SP and CGRP) are important in the maintenance of corneal nerve health, but the impact of LASIK has not yet been studied. This study evaluated changes in nerve morphology, tear neuropeptide, and dry eye, so as to establish the relationship between reinnervation and dry eye and to assess the role of tear neuropeptides in reinnervation post-LASIK.

Methods

Twenty non-dry eye volunteers who had undergone bilateral myopic-LASIK completed this study. Corneal nerve morphology (density, width, interconnections, and tortuosity), SP and CGRP concentration, and dry eye were monitored over time prior to, 1 day, 1 week, 1, 3, and 6 months post-LASIK.

Results

Dry eye symptoms and tear function, except for osmolarity (P = 0.003), remained unchanged post-LASIK. Corneal nerve morphology decreased immediately, and did not return to preoperative levels by 6 months post-LASIK (P < 0.001). Increased tear SP concentration was observed 3 months post-LASIK (P < 0.001). Associations between reinnervation as measured by increased density and lower tear SP (P = 0.03), and between increased density and decreased dry eye symptoms (P = 0.01) were found post-LASIK.

Conclusion

An inverse relationship between reinnervation post-LASIK and dry eye symptoms was found, confirming that post-LASIK dry eye is a neuropathic disease. This study is the first to demonstrate an association between tear SP and post-LASIK reinnervation, suggesting that strategies for manipulating neuropeptide concentration to improve reinnervation may improve ocular comfort post-LASIK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Savini G, Barboni P, Zanini M, Tseng SC (2004) Ocular surface changes in laser in situ keratomileusis-induced neurotrophic epitheliopathy. J Refract Surg 20:803–809

    PubMed  Google Scholar 

  2. Wilson SE (2001) Laser in situ keratomileusis-induced (presumed) neurotrophic epitheliopathy. Ophthalmology 108:1082–1087

    Article  CAS  PubMed  Google Scholar 

  3. Wilson SE, Ambrosio R (2001) Laser in situ keratomileusis-induced neurotrophic epitheliopathy. Am J Ophthalmol 132:405–406

    Article  CAS  PubMed  Google Scholar 

  4. Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK et al (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589

    Article  CAS  PubMed  Google Scholar 

  5. Quinto GG, Camacho W, Behrens A (2008) Postrefractive surgery dry eye. Curr Opin Ophthalmol 19:335–341

    Article  PubMed  Google Scholar 

  6. Calvillo MP, McLaren JW, Hodge DO, Bourne WM (2004) Corneal reinnervation after LASIK: prospective 3-year longitudinal study. Invest Ophthalmol Vis Sci 45:3991–3996

    Article  PubMed  Google Scholar 

  7. Erie JC, McLaren JW, Hodge DO, Bourne WM (2005) Recovery of corneal subbasal nerve density after PRK and LASIK. Am J Ophthalmol 140:1059–1064

    Article  PubMed  Google Scholar 

  8. Darwish T, Brahma A, O’Donnell C, Efron N (2007) Subbasal nerve fiber regeneration after LASIK and LASEK assessed by noncontact esthesiometry and in vivo confocal microscopy: prospective study. J Cataract Refract Surg 33:1515–1521

    Article  PubMed  Google Scholar 

  9. Chao C, Golebiowski B, Stapleton F (2014) The role of corneal innervation in LASIK-induced neuropathic dry eye. Ocul Surf 12:32–45

    Article  PubMed  Google Scholar 

  10. Garcia-Hirschfeld J, Lopez-Briones LG, Belmonte C (1994) Neurotrophic influences on corneal epithelial cells. Exp Eye Res 59:597–605

    Article  CAS  PubMed  Google Scholar 

  11. De Felipe C, Gonzalez GG, Gallar J, Belmonte C (1999) Quantification and immunocytochemical characteristics of trigeminal ganglion neurons projecting to the cornea: effect of corneal wounding. Eur J Pain 3:31–39

    Article  PubMed  Google Scholar 

  12. Belmonte C, Acosta MC, Gallar J (2004) Neural basis of sensation in intact and injured corneas. Exp Eye Res 78:513–525

    Article  CAS  PubMed  Google Scholar 

  13. De Felipe C, Herrero JF, O’Brien JA, Palmer JA, Doyle CA et al (1998) Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 392:394–397

    Article  PubMed  Google Scholar 

  14. Chen LJ, Zhang FG, Li J, Song HX, Zhou LB et al (2010) Expression of calcitonin gene-related peptide in anterior and posterior horns of the spinal cord after brachial plexus injury. J Clin Neurosci 17:87–91

    Article  CAS  PubMed  Google Scholar 

  15. Mikulec AA, Tanelian DL (1996) CGRP increases the rate of corneal re-epithelialization in an in vitro whole mount preparation. J Ocul Pharmacol Ther 12:417–423

    Article  CAS  PubMed  Google Scholar 

  16. Troger J, Kieselbach G, Teuchner B, Kralinger M, Nguyen QA et al (2007) Peptidergic nerves in the eye, their source and potential pathophysiological relevance. Brain Res Rev 53:39–62

    Article  PubMed  Google Scholar 

  17. Papp A, Valtonen P (2006) Tissue substance P levels in acute experimental burns. Burns 32:842–845

    Article  PubMed  Google Scholar 

  18. Mertaniemi P, Ylätupa S, Partanen P, Tervo T (1995) Increased release of immunoreactive calcitonin gene-related peptide (CGRP) in tears after laser keratectomy. Exp Eye Res 60:659–665

    Article  CAS  PubMed  Google Scholar 

  19. Lee HK, Lee KS, Kim HC, Lee SH, Kim EK (2005) Nerve growth factor conentration and implications in photorefractive keratectomy vs laser in situ keratomileusis. Am J Ophthalmol 139:965–971

    Article  CAS  PubMed  Google Scholar 

  20. Albietz JM, Lenton LM (2004) Management of the ocular surface and tear film before, during, and after laser in situ keratomileusis. J Refract Surg 20:62–71

    PubMed  Google Scholar 

  21. Dooley I, D’Arcy F, O’Keefe M (2012) Comparison of dry-eye disease severity after laser in situ keratomileusis and laser-assisted subepithelial keratectomy. J Cataract Refract Surg 38:1058–1064

    Article  PubMed  Google Scholar 

  22. Mian SI, Li AY, Dutta S, Musch DC, Shtein RM (2009) Dry eyes and corneal sensation after laser in situ keratomileusis with femtosecond laser flap creation effect of hinge position, hinge angle, and flap thickness. J Cataract Refract Surg 35:2092–2098

    Article  PubMed  Google Scholar 

  23. Mian SI, Shtein RM, Nelson A, Musch DC (2007) Effect of hinge position on corneal sensation and dry eye after laser in situ keratomileusis using a femtosecond laser. J Cataract Refract Surg 33:1190–1194

    Article  PubMed  Google Scholar 

  24. Sun CC, Chang CK, Ma DH, Lin YF, Chen KJ et al (2013) Dry eye after LASIK with a femtosecond laser or a mechanical microkeratome. Optom Vis Sci 90:1048–1056

    Article  PubMed  Google Scholar 

  25. Vroman DT, Sandoval HP, Fernandez de Castro LE, Kasper TJ, Holzer MP et al (2005) Effect of hinge location on corneal sensation and dry eye after laser in situ keratomileusis for myopia. J Cataract Refract Surg 31:1881–1887

    Article  PubMed  Google Scholar 

  26. Donnenfeld ED, Ehrenhaus M, Solomon R, Mazurek J, Rozell JC et al (2004) Effect of hinge width on corneal sensation and dry eye after laser in situ keratomileusis. J Cataract Refract Surg 30:790–797

    Article  PubMed  Google Scholar 

  27. Donnenfeld ED, Solomon K, Perry HD, Doshi SJ, Ehrenhaus M et al (2003) The effect of hinge position on corneal sensation and dry eye after LASIK. Ophthalmology 110:1023–1029

    Article  PubMed  Google Scholar 

  28. Nejima R, Miyata K, Tanabe T, Okamoto F, Hiraoka T et al (2005) Corneal barrier function, tear film stability, and corneal sensation after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 139:64–71

    Article  PubMed  Google Scholar 

  29. Toda I, Asano-Kato N, Komai-Hori Y, Tsubota K (2001) Dry eye after laser in situ keratomileusis. Am J Ophthalmol 132:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Yu EY, Leung A, Rao S, Lam DS (2000) Effect of laser in situ keratomileusis on tear stability. Ophthalmology 107:2131–2135

    Article  CAS  PubMed  Google Scholar 

  31. Albietz JM, Lenton LM, McLennan SG (2002) Effect of laser in situ keratomileusis for hyperopia on tear film and ocular surface. J Refract Surg 18:113–123

    PubMed  Google Scholar 

  32. Patel S, Alio JL, Artola A, Martinez MJ (2007) Tear volume and stability after LASIK. J Refract Surg 23:290–298

    PubMed  Google Scholar 

  33. Tao A, Shen M, Wang J, Chen Q, Lu F (2010) Upper and lower tear menisci after laser in situ keratomileusis. Eye Contact Lens 36:81–85

    Article  PubMed  Google Scholar 

  34. Albietz JM, Lenton LM, McLennan SG (2005) Dry eye after LASIK: comparison of outcomes for Asian and Caucasian eyes. Clin Exp Optom 88:89–96

    Article  PubMed  Google Scholar 

  35. Lee S, Kim J, Seo K, Kim EK, Lee HK (2006) Comparison of corneal nerve regeneration and sensitivity between LASIK and laser epithelial keratomileusis (LASEK). Am J Ophthalmol 141:1009–1015

    Article  PubMed  Google Scholar 

  36. Stapleton F, Hayward KB, Bachand N, Trong PH, Teh DW et al (2006) Evaluation of corneal sensitivity to mechanical and chemical stimuli after LASIK: a pilot study. Eye Contact Lens 32:88–93

    Article  PubMed  Google Scholar 

  37. Lee JB, Ryu CH, Kim J, Kim EK, Kim HB (2000) Comparison of tear secretion and tear film instability after photorefractive keratectomy and laser in situ keratomileusis. J Cataract Refract Surg 26:1326–1331

    Article  CAS  PubMed  Google Scholar 

  38. Johnson ME, Murphy PJ (2007) Measurement of ocular surface irritation on a linear interval scale with the Ocular Comfort Index. Invest Ophthalmol Vis Sci 48:4451–4458

    Article  PubMed  Google Scholar 

  39. Chao C, Golebiowski B, Cui Y, Stapleton F (2014) Development of a Chinese version of the Ocular Comfort Index. Invest Ophthalmol Vis Sci 55:3562–3571

    Article  PubMed  Google Scholar 

  40. Gokhale M, Stahl U, Jalbert I (2013) In situ osmometry: validation and effect of sample collection technique. Optom Vis Sci 90:359–365

    Article  PubMed  Google Scholar 

  41. Versura P, Profazio V, Campos EC (2010) Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr Eye Res 35:553–564

    Article  CAS  PubMed  Google Scholar 

  42. Chen F, Shen M, Chen W, Wang J, Li M et al (2010) Tear meniscus volume in dry eye after punctal occlusion. Invest Ophthalmol Vis Sci 51:1965–1969

    Article  PubMed  Google Scholar 

  43. Li J, Shen M, Wang J, Ma H, Tao A et al (2012) Clinical significance of tear menisci in dry eye. Eye Contact Lens 38:183–187

    Article  PubMed  Google Scholar 

  44. Guillon M, Styles E, Guillon JP, Maissa C (1997) Preocular tear film characteristics of nonwearers and soft contact lens wearers. Optom Vis Sci 74:273–279

    Article  CAS  PubMed  Google Scholar 

  45. Lemp MA, Bron AJ, Baudouin C, Benítez Del Castillo JM, Geffen D et al (2011) Tear osmolarity in the diagnosis and management of dry eye disease. Am J Ophthalmol 151:792–798

    Article  PubMed  Google Scholar 

  46. Jones SM, Nischal KK (2013) The non-invasive tear film break-up time in normal children. Br J Ophthalmol 97:1129–1133

    Article  PubMed  Google Scholar 

  47. Nichols JJ, Nichols KK, Puent B, Saracino M, Mitchell GL (2002) Evaluation of tear film interference patterns and measures of tear break-up time. Optom Vis Sci 79:363–369

    Article  PubMed  Google Scholar 

  48. Shen M, Wang J, Tao A, Chen Q, Lin S, Qu J, Lu F (2008) Diurnal variation of upper and lower tear menisci. Am J Ophthalmol 145:801–806

    Article  PubMed  Google Scholar 

  49. Jalbert I, Chao C, Stapleton F, Ashby B, Golebiowski B (2012) Associations between corneal nerve density, corneal sensitivity, and tear substance P in lens wearers. Optom Vis Sci 89:E-abstract 120722

    Google Scholar 

  50. Golebiowski B, Papas E, Stapleton F (2011) Assessing the sensory function of the ocular surface: implications of use of a non-contact air jet aesthesiometer versus the Cochet–Bonnet aesthesiometer. Exp Eye Res 92:408–413

    Article  CAS  PubMed  Google Scholar 

  51. Cochet P, Bonnet R (1960) L’esthésie cornéenne. Clin Ophthalmol 4:3–27

    Google Scholar 

  52. Chao C, Stapleton F, Badarudin E, Golebiowski B (2015) Ocular surface sensitivity repeatability with Cochet–Bonnet esthesiometer. Optom Vis Sci 92:182–189

    Article  Google Scholar 

  53. Lum E (2014) The impact of overnight orthokeratology on sub-basal nerve plexus morphology and corneal sensitivity. Dissertation, The University of New South Wales

  54. Lum E, Golebiowski B, Swarbrick HA (2012) Mapping the corneal sub-basal nerve plexus in orthokeratology lens wear using in vivo laser scanning confocal microscopy. Invest Ophthalmol Vis Sci 53:1803–1809

    Article  PubMed  Google Scholar 

  55. Meijering E, Jacob M, Sarria JC, Steiner P, Hirling H et al (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58:167–176

    Article  CAS  PubMed  Google Scholar 

  56. Oliveira-Soto L, Efron N (2001) Morphology of corneal nerves using confocal microscopy. Cornea 20:374–384

    Article  CAS  PubMed  Google Scholar 

  57. Yaksh TL, Dirig DM, Conway CM, Svensson C, Luo ZD et al (2001) The acute antihyperalgesic action of nonsteroidal, anti-inflammatory drugs and release of spinal prostaglandin E2 is mediated by the inhibition of constitutive spinal cyclooxygenase-2 (COX-2) but not COX-1. J Neurosci 21:5847–5853

    CAS  PubMed  Google Scholar 

  58. Staton PC, Wilson AW, Bountra C, Chessell IP, Day NC (2007) Changes in dorsal root ganglion CGRP expression in a chronic inflammatory model of the rat knee joint: differential modulation by rofecoxib and paracetamol. Eur J Pain 11:283–289

    Article  CAS  PubMed  Google Scholar 

  59. Nohr D, Schafer MK, Persson S, Romeo H, Nyberg F et al (1999) Calcitonin gene-related peptide gene expression in collagen-induced arthritis is differentially regulated in primary afferents and motoneurons: influence of glucocorticoids. Neuroscience 93:759–773

    Article  CAS  PubMed  Google Scholar 

  60. Wong HK, Tan KJ (2002) Effects of corticosteroids on nerve root recovery after spinal nerve root compression. Clin Orthop Relat Res 403:248–252

    Article  PubMed  Google Scholar 

  61. Han SH, An HJ, Song JY, Shin DE, Kwon YD et al (2012) Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis. J Inflamm 9:40

    Article  CAS  Google Scholar 

  62. Patel SV, McLaren JW, Kittleson KM, Bourne WM (2010) Subbasal nerve density and corneal sensitivity after laser in situ keratomileusis: femtosecond laser vs mechanical microkeratome. Arch Ophthalmol 128:1413–1419

    Article  PubMed Central  PubMed  Google Scholar 

  63. Moilanen JA, Holopainen JM, Vesaluoma MH, Tervo TM (2008) Corneal recovery after lasik for high myopia: a 2-year prospective confocal microscopic study. Br J Ophthalmol 92:1397–1402

    Article  CAS  PubMed  Google Scholar 

  64. Lee BH, McLaren JW, Erie JC, Hodge DO, Bourne WM (2002) Reinnervation in the cornea after LASIK. Invest Ophthalmol Vis Sci 43:3660–3664

    PubMed  Google Scholar 

  65. Linna TU, Vesaluoma MH, Perez-Santonja JJ, Petroll WM, Alio JL et al (2000) Effect of myopic LASIK on corneal sensitivity and morphology of subbasal nerves. Invest Ophthalmol Vis Sci 41:393–397

    CAS  PubMed  Google Scholar 

  66. Linna TU, Perez-Santonja JJ, Tervo KM, Sakla HF, Alio y Sanz JL et al (1998) Recovery of corneal nerve morphology following laser in situ keratomileusis. Exp Eye Res 66:755–763

    Article  CAS  PubMed  Google Scholar 

  67. Patel DV (2005) In vivo confocal microscopy of the cornea in health and disease. Dissertation, University of Auckland

  68. Labbe A, Alalwani H, Van Went C, Brasnu E, Georgescu D et al (2012) The relationship between subbasal nerve morphology and corneal sensation in ocular surface disease. Invest Ophthalmol Vis Sci 53:4926–4931

    Article  PubMed  Google Scholar 

  69. Labbe A, Liang Q, Wang Z, Zhang Y, Xu L et al (2013) Corneal nerve structure and function in patients with non-Sjögren dry eye: clinical correlations. Invest Ophthalmol Vis Sci 54:5144–5150

    Article  PubMed  Google Scholar 

  70. Zhang M, Chen J, Luo L, Xiao Q, Sun M et al (2005) Altered corneal nerves in aqueous tear deficiency viewed by in vivo confocal microscopy. Cornea 24:818–824

    Article  PubMed  Google Scholar 

  71. Albietz JM, McLennan SG, Lenton LM (2003) Ocular surface management of photorefractive keratectomy and laser in situ keratomileusis. J Refract Surg 19:636–644

    PubMed  Google Scholar 

  72. Patel DV, Ku JY, Johnson R, McGhee CN (2009) Laser scanning in vivo confocal microscopy and quantitative aesthesiometry reveal decreased corneal innervation and sensation in keratoconus. Eye (Lond) 23:586–592

    Article  CAS  Google Scholar 

  73. Patel DV, Tavakoli M, Craig JP, Efron N, McGhee CN (2009) Corneal sensitivity and slit scanning in vivo confocal microscopy of the subbasal nerve plexus of the normal central and peripheral human cornea. Cornea 28:735–740

    Article  PubMed  Google Scholar 

  74. Patel SV, McLaren JW, Hodge DO, Bourne WM (2002) Confocal microscopy in vivo in corneas of long-term contact lens wearers. Invest Ophthalmol Vis Sci 43:995–1003

    PubMed  Google Scholar 

Download references

Acknowledgments

Support for the tear osmolarity testcards by TearLab Corporation is acknowledged. The authors thank Dr Wei Chen for the instrument support (TearLab) in China. We would like to thank staff in the refractive surgery outpatient unit in Wenzhou Eye Hospital for assistance with data collection, and are grateful for the lab support from Zhou’s team in the School of Ophthalmology and Optometry, Wenzhou Medical University. In addition, we would like to thank Dr Ren Chen for his kind contribution.

Conflict of interest disclosures

All authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Financial support

This study was supported by the University of New South Wales and Wenzhou Medical University. CC received a scholarship from the Australian Government through the International Postgraduate Research Scholarship scheme. SZ received a scholarship from Government Supported Student Award from China. SH received grant supports from Key Technological Innovation Team, Wenzhou China (Refractive surgery new technologies and new product, C20120009-02) and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (2012BAI08B05). The sponsor or funding organization had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanka Golebiowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chao, C., Stapleton, F., Zhou, X. et al. Structural and functional changes in corneal innervation after laser in situ keratomileusis and their relationship with dry eye. Graefes Arch Clin Exp Ophthalmol 253, 2029–2039 (2015). https://doi.org/10.1007/s00417-015-3120-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3120-1

Keywords

Navigation