Skip to main content

Advertisement

Log in

Baseline haemoglobin A1c influences retinal function after long-term insulin pump therapy

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study was to characterize the long-term effect of insulin pump therapy (CSII) on electroretinography and dark adaptometry and to examine the influence of baseline glycaemic control on retinal function in patients with type 1 diabetes mellitus.

Methods

This prospective observational extension study enrolled 13 patients out of 17 who completed a primary 1-year study of the effect of CSII on retinal function. Twelve patients were still on CSII at follow-up. The extension study included a single examination 3.5 years (range 3.0–4.0 years) after initiation of CSII of one study eye per patient. Procedures included full-field electroretinography (ERG), dark adaptometry, optical coherence tomography, and fundus photography.

Results

Mean ERG amplitudes 3.5 years after initiation of CSII were 15–43 % lower than at baseline (all p < 0.05) and 21–45 % lower than after 1 year on CSII. The mean rate of dark adaptation had returned to baseline after a transient 13 % (p = 0.0024) acceleration at the 1-year visit. Reduction of ERG amplitudes between 1 and 3.5 years was statistically associated predominantly with baseline haemoglobin A1c (HbA1c) ≥ 8.7 % and, to a smaller extent, with HbA1c reductions larger than 1.9 % after initiation of CSII. No significant changes in ERG amplitudes were found in patients with baseline HbA1c < 8.7 % and HbA1c reductions smaller than 1.9 %.

Conclusions

Deterioration of subclinical retinal function from 1 to 3.5 years after initiation of CSII was associated predominantly with poorer metabolic control before initiation of CSII. Analyses of retinal function may supplement structural and morphological characteristics in the study of diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Davis MD, Fisher MR, Gangnon RE, Barton F, Aiello LM, Chew EY, Ferris FL III, Knatterud GL (1998) Risk factors for high-risk proliferative diabetic retinopathy and severe visual loss: Early Treatment Diabetic Retinopathy Study Report #18. Invest Ophthalmol Vis Sci 39:233–252

    CAS  PubMed  Google Scholar 

  2. Porta M, Sjoelie AK, Chaturvedi N, Stevens L, Rottiers R, Veglio M, Fuller JH (2001) Risk factors for progression to proliferative diabetic retinopathy in the EURODIAB Prospective Complications Study. Diabetologia 44:2203–2209

    Article  CAS  PubMed  Google Scholar 

  3. Cheung N, Mitchell P, Wong TY (2010) Diabetic retinopathy. Lancet 376:124–136

    Article  PubMed  Google Scholar 

  4. Aiello LP (2014) Diabetic retinopathy and other ocular findings in the diabetes control and complications trial/epidemiology of diabetes interventions and complications study. Diabetes Care 37:17–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Diabetes Control and Complications Trial Research Group (1998) Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol 116:874–886

    Article  Google Scholar 

  6. Kilpatrick ES, Rigby AS, Atkin SL (2008) A1C variability and the risk of microvascular complications in type 1 diabetes: data from the Diabetes Control and Complications Trial. Diabetes Care 31:2198–2202

    Article  PubMed Central  PubMed  Google Scholar 

  7. Ostri C, Lund-Andersen H, Sander B, Hvidt-Nielsen D, Larsen M (2010) Bilateral diabetic papillopathy and metabolic control. Ophthalmology 117:2214–2217

    Article  PubMed  Google Scholar 

  8. Sander B, Larsen M, Andersen EW, Lund-Andersen H (2013) Impact of changes in metabolic control on progression to photocoagulation for clinically significant macular oedema: a 20 year study of type 1 diabetes. Diabetologia 56:2359–2366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Juen S, Kieselbach GF (1990) Electrophysiological changes in juvenile diabetics without retinopathy. Arch Ophthalmol 108:372–375

    Article  CAS  PubMed  Google Scholar 

  10. Jackson GR, Scott IU, Quillen DA, Walter LE, Gardner TW (2012) Inner retinal visual dysfunction is a sensitive marker of non-proliferative diabetic retinopathy. Br J Ophthalmol 96:699–703

    Article  PubMed  Google Scholar 

  11. Klemp K, Sander B, Brockhoff PB, Vaag A, Lund-Andersen H, Larsen M (2005) The multifocal ERG in diabetic patients without retinopathy during euglycemic clamping. Invest Ophthalmol Vis Sci 46:2620–2626

    Article  PubMed  Google Scholar 

  12. Amemiya T (1977) Dark adaptation in diabetics. Ophthalmologica 174:322–326

    Article  CAS  PubMed  Google Scholar 

  13. Di Leo MA, Caputo S, Falsini B, Porciatti V, Minnella A, Greco AV, Ghirlanda G (1992) Nonselective loss of contrast sensitivity in visual system testing in early type I diabetes. Diabetes Care 15:620–625

    Article  PubMed  Google Scholar 

  14. Holfort SK, Norgaard K, Jackson GR, Hommel E, Madsbad S, Munch IC, Klemp K, Sander B, Larsen M (2011) Retinal function in relation to improved glycaemic control in type 1 diabetes. Diabetologia 54:1853–1861

    Article  CAS  PubMed  Google Scholar 

  15. Jackson GR, Edwards JG (2008) A short-duration dark adaptation protocol for assessment of age-related maculopathy. J Ocul Biol Dis Infor 1:7–11

    Article  PubMed Central  PubMed  Google Scholar 

  16. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M, Bach M (2009) ISCEV standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 118:69–77

    Article  CAS  PubMed  Google Scholar 

  17. Brinchmann-Hansen O, Dahl-Jorgensen K, Hanssen KF, Sandvik L (1992) Macular recovery time, diabetic retinopathy, and clinical variables after 7 years of improved glycemic control. Acta Ophthalmol (Copenh) 70:235–242

    Article  CAS  Google Scholar 

  18. Brinchmann-Hansen O, Dahl-Jorgensen K, Hanssen KF, Sandvik L (1988) Oscillatory potentials, macular recovery time, and diabetic retinopathy through 3 years of intensified insulin treatment. Ophthalmology 95:1358–1366

    Article  CAS  PubMed  Google Scholar 

  19. Frost-Larsen K, Larsen HW, Simonsen SE (1981) Value of electroretinography and dark adaptation as prognostic tools in diabetic retinopathy. Dev Ophthalmol 2:222–234

    Article  CAS  PubMed  Google Scholar 

  20. Vadala M, Anastasi M, Lodato G, Cillino S (2002) Electroretinographic oscillatory potentials in insulin-dependent diabetes patients: a long-term follow-up. Acta Ophthalmol Scand 80:305–309

    Article  PubMed  Google Scholar 

  21. Hellgren KJ, Agardh E, Bengtsson B (2014) Progression of early retinal dysfunction in diabetes over time: results of a long-term Prospective Clinical Study. Diabetes 63:3104–3111

    Article  PubMed  Google Scholar 

  22. Brunette JR, Lafond G (1983) Electroretinographic evaluation of diabetic retinopathy: sensitivity of amplitude and time of response. Can J Ophthalmol 18:285–289

    CAS  PubMed  Google Scholar 

  23. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521

    Article  CAS  PubMed  Google Scholar 

  24. Gjotterberg M (1974) The electroretinogram in diabetic retinopathy. A clinical study and a critical survey. Acta Ophthalmol (Copenh) 52:521–533

    Article  CAS  Google Scholar 

  25. Tyrberg M, Lindblad U, Melander A, Lovestam-Adrian M, Ponjavic V, Andreasson S (2011) Electrophysiological studies in newly onset type 2 diabetes without visible vascular retinopathy. Doc Ophthalmol 123:193–198

    Article  CAS  PubMed  Google Scholar 

  26. Holfort SK, Klemp K, Kofoed PK, Sander B, Larsen M (2010) Scotopic electrophysiology of the retina during transient hyperglycemia in type 2 diabetes. Invest Ophthalmol Vis Sci 51:2790–2794

    Article  PubMed  Google Scholar 

  27. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110:1571–1576

    Article  CAS  PubMed  Google Scholar 

  28. Freund PR, Watson J, Gilmour GS, Gaillard F, Sauve Y (2011) Differential changes in retina function with normal aging in humans. Doc Ophthalmol 122:177–190

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present study was supported by the University of Copenhagen and Øjenforeningen (Fight For Sight, Denmark). The electroretinographic results of the present paper were presented at ARVO 2013, Association for Research in Vision and Ophthalmology. Seattle, WA, 6 May 2013.

Conflict of interest

No conflicts of interest. None of the authors have a proprietary interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver N. Klefter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klefter, O.N., Holfort, S.K. & Larsen, M. Baseline haemoglobin A1c influences retinal function after long-term insulin pump therapy. Graefes Arch Clin Exp Ophthalmol 254, 467–473 (2016). https://doi.org/10.1007/s00417-015-3083-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-015-3083-2

Keywords

Navigation