Skip to main content

Advertisement

Log in

Short-term fluctuation of intraocular pressure is higher in patients with pseudoexfoliation syndrome despite similar mean intraocular pressure: a retrospective case–control study

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Higher levels of short-term fluctuation of intraocular pressure (IOP) are characteristic of pseudoexfoliation syndrome (PEX). However, it is not known whether they are just a side effect of the higher mean intraocular pressure (IOP) or an independent feature. The purpose of this study was to compare short-term fluctuation of IOP between eyes with PEX and control eyes that were matched as closely as possible for mean IOP.

Methods

In this retrospective case–control study, all patients with confirmed PEX were identified from the database of the Erlangen Glaucoma Registry. From the same database, matched control eyes with similar treatment, age, glaucoma stage, and mean IOP were identified. For each patient, data from multiple extended diurnal IOP profiles were available.

Results

Seventy-eight eyes were included in the study (39 with PEX and 39 matched control eyes). Although a very close match was achieved, a small but statistically significant difference in mean IOP was still present, but this did not seem to explain the differences in IOP fluctuation levels. Eyes with PEX had significantly higher short-term IOP fluctuations (SD of IOP and range of IOP).

Conclusions

The higher levels of short-term fluctuation in IOP appear to be an independent feature of PEX and not merely a secondary effect of the higher mean IOP. We suggest that this may have practical implications, even if IOP fluctuation levels should not prove to be an independent risk factor for development/progression of glaucoma, because more frequent measurements are needed in these patients to obtain good estimates of mean IOP and changes in IOP under treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ritch R (1994) Exfoliation syndrome-the most common identifiable cause of open-angle glaucoma. J Glaucoma 3:176–177

    CAS  PubMed  Google Scholar 

  2. Thorleifsson G, Magnusson KP, Sulem P et al (2007) Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science 317:1397–1400. doi:10.1126/science.1146554

    Article  CAS  PubMed  Google Scholar 

  3. Pasutto F, Krumbiegel M, Mardin CY et al (2008) Association of LOXL1 common sequence variants in German and Italian patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma. Invest Ophthalmol Vis Sci 49:1459–1463. doi:10.1167/iovs.07-1449

    Article  PubMed  Google Scholar 

  4. Schlötzer-Schrehardt U, Hammer CM, Krysta AW et al (2012) LOXL1 deficiency in the lamina cribrosa as candidate susceptibility factor for a pseudoexfoliation-specific risk of glaucoma. Ophthalmology 119:1832–1843. doi:10.1016/j.ophtha.2012.03.015

    Article  PubMed  Google Scholar 

  5. Naumann GOH, Schlötzer-Schrehardt U, Küchle M (1998) Pseudoexfoliation syndrome for the comprehensive ophthalmologist: intraocular and systemic manifestations. Ophthalmology 105:951–968. doi:10.1016/S0161-6420(98)96020-1

    Article  CAS  PubMed  Google Scholar 

  6. Aasved H (1971) The frequency of optic nerve damage and surgical treatment in chronic simple glaucoma and capsular glaucoma. Acta Ophthalmol (Copenh) 49:589–600

    Article  CAS  Google Scholar 

  7. Konstas AGP, Jay JL, Marshall GE, Lee WR (1993) Prevalence, diagnostic features, and response to trabeculectomy in exfoliation glaucoma. Ophthalmology 100:619–627. doi:10.1016/S0161-6420(93)31596-4

    Article  CAS  PubMed  Google Scholar 

  8. Konstas AGP, Tsatsos I, Kardasopoulos A et al (1998) Preoperative features of patients with exfoliation glaucoma and primary open-angle glaucoma. The AHEPA study. Acta Ophthalmol Scand 76:208–212

    Article  CAS  PubMed  Google Scholar 

  9. Lindblom B, Thorburn W (1984) Functional damage at diagnosis of primary open angle glaucoma. Acta Ophthalmol (Copenh) 62:223–229

    Article  CAS  Google Scholar 

  10. Futa R, Shimizu T, Furuyoshi N et al (1992) Clinical features of capsular glaucoma in comparison with primary open-angle glaucoma in Japan. Acta Ophthalmol (Copenh) 70:214–219

    Article  CAS  Google Scholar 

  11. Ritch R, Schlötzer-Schrehardt U (2001) Exfoliation syndrome. Surv Ophthalmol 45:265–315. doi:10.1016/S0039-6257(00)00196-X

    Article  CAS  PubMed  Google Scholar 

  12. Aasved H (1971) The frequency of fibrillopathia epitheliocapsularis (so-called senile exfoliation or pseudoexfoliation) in patients with open-angle glaucoma. Acta Ophthalmol (Copenh) 49:194–210

    Article  CAS  Google Scholar 

  13. Davanger M, Ringvold A, Blika S (1991) Pseudo-exfoliation, IOP and glaucoma. Acta Ophthalmol (Copenh) 69:569–573

    Article  CAS  Google Scholar 

  14. Sultan MB, Mansberger SL, Lee PP (2009) Understanding the importance of IOP variables in glaucoma: a systematic review. Surv Ophthalmol 54:643–662. doi:10.1016/j.survophthal.2009.05.001

    Article  PubMed  Google Scholar 

  15. Jonas JB, Budde WM, Stroux A et al (2007) Diurnal intraocular pressure profiles and progression of chronic open-angle glaucoma. Eye Lond Engl 21:948–951. doi:10.1038/sj.eye.6702351

    Article  CAS  Google Scholar 

  16. Huchzermeyer C, Horn F, Jünemann A (2011) Bias associated with the use of maximum, minimum, or range of a number of intraocular pressure measurements. Invest Ophthalmol Vis Sci 52:2217–2218. doi:10.1167/iovs.10-6775

    Article  PubMed  Google Scholar 

  17. Nouri-Mahdavi K, Hoffman D, Coleman AL et al (2004) Predictive factors for glaucomatous visual field progression in the advanced glaucoma intervention study. Ophthalmology 111:1627–1635. doi:10.1016/j.ophtha.2004.02.017

    Article  PubMed  Google Scholar 

  18. Altintaş Ö, Yüksel N, Karabaş VL, Çaglar Y (2004) Diurnal intraocular pressure variation in pseudoexfoliation syndrome. Eur J Ophthalmol 14:495–500

    PubMed  Google Scholar 

  19. Konstas AGP, Mantziris DA, Stewart WC (1997) Diurnal intraocular pressure in untreated exfoliation and primary open- angle glaucoma. Arch Ophthalmol 115:182–185

    Article  CAS  PubMed  Google Scholar 

  20. Duke-Elder S (1952) The phasic variations in the ocular tension in primary glaucoma. Am J Ophthalmol 35:1–21

    Article  CAS  PubMed  Google Scholar 

  21. Drance SM (1960) The significance of the diurnal tension variations in normal and glaucomatous eyes. Arch Ophthalmol 64:494–501

    Article  CAS  PubMed  Google Scholar 

  22. Asrani S, Zeimer R, Wilensky J et al (2000) Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. J Glaucoma 9:134–142

    Article  CAS  PubMed  Google Scholar 

  23. Bergeå B, Bodin L, Svedbergh B (1999) Impact of intraocular pressure regulation on visual fields in open-angle glaucoma. Ophthalmology 106:997–1004. doi:10.1016/S0161-6420(99)00523-0, discussion 1004–1005

    Article  PubMed  Google Scholar 

  24. Gonzalez I, Pablo LE, Pueyo M et al (1996) Assessment of diurnal tensional curve in early glaucoma damage. Int Ophthalmol 20:113–115

    PubMed  Google Scholar 

  25. Zeimer RC (1996) Circadian variations in intraocular pressure. In Ritch R, Shields MB, Krupin T (ed) The Glaucomas 1: Basic Sciences, 2nd edn. Mosby, pp 429–445

  26. Saccà SC, Rolando M, Marletta A et al (1998) Fluctuations of intraocular pressure during the day in open-angle glaucoma, normal-tension glaucoma and normal subjects. Int Ophthalmol 212:115–119

    Google Scholar 

  27. Bengtsson B, Heijl A (2005) Diurnal IOP fluctuation: not an independent risk factor for glaucomatous visual field loss in high-risk ocular hypertension. Graefes Arch Clin Exp Ophthalmol 243:513–518. doi:10.1007/s00417-004-1103-8

    Article  PubMed  Google Scholar 

  28. Gardiner SK, Fortune B, Wang L et al (2012) Intraocular pressure magnitude and variability as predictors of rates of structural change in non-human primate experimental glaucoma. Exp Eye Res 103:1–8. doi:10.1016/j.exer.2012.07.012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Choi J, Kim KH, Jeong J et al (2007) Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci 48:104–111. doi:10.1167/iovs.06-0615

    Article  PubMed  Google Scholar 

  30. Daugeliene L, Yamamoto T, Kitazawa Y (1999) Risk factors for visual field damage progression in normal-tension glaucoma eyes. Graefes Arch Clin Exp Ophthalmol 237:105–108

    Article  CAS  PubMed  Google Scholar 

  31. Ishida K, Yamamoto T, Kitazawa Y (1998) Clinical factors associated with progression of normal-tension glaucoma. J Glaucoma 7:372–377

    Article  CAS  PubMed  Google Scholar 

  32. Smith J (1985) Diurnal intraocular pressure. Correlation to automated perimetry. Ophthalmology 92:858–861

    Article  CAS  PubMed  Google Scholar 

  33. Bengtsson B, Leske MC, Hyman L, Heijl A (2007) Fluctuation of intraocular pressure and glaucoma progression in the early manifest glaucoma trial. Ophthalmology 114:205–209. doi:10.1016/j.ophtha.2006.07.060

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

Cord Huchzermeyer–None

Folkert Horn–None

Robert Lämmer–None

Christian Y. Mardin–None

Anselm G.M. Jünemann–None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cord Huchzermeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huchzermeyer, C., Horn, F., Lämmer, R. et al. Short-term fluctuation of intraocular pressure is higher in patients with pseudoexfoliation syndrome despite similar mean intraocular pressure: a retrospective case–control study. Graefes Arch Clin Exp Ophthalmol 253, 107–114 (2015). https://doi.org/10.1007/s00417-014-2821-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2821-1

Keywords

Navigation