Skip to main content
Log in

Distribution of internal carotid artery plaque locations among patients with central retinal artery occlusion in the Eagle study population

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Arterial emboli in the internal carotid artery (ICA) mainly cause cerebral ischemia; only 10 % of emboli reach the retinal arteries. Computational blood flow studies suggest that plaques situated in the ICA siphon may be a source of embolism to the ophthalmic artery (OA). To validate these calculated probabilities in patients with central retinal artery occlusion (CRAO), we reanalyzed digital subtraction angiography (DSA) images from the Multicenter Study of the European Assessment Group for Lysis in the Eye (EAGLE) study, a multicenter randomized study in patients with nonarteritic CRAO.

Methods

A reevaluation of 34 DSA studies was done from the interventional arm of the EAGLE study with regards to distribution of arterial plaques at specific ICA siphon locations and ICA stenosis. A comparison was made of plaque distribution to calculated probabilities for emboli reaching the OA from a computational fluid dynamics (CFD) model of a patient-specific ICA siphon.

Results

Most of the ICA plaques near the OA’s origin were located in the cavernous ICA portion (31.3%). Of these, 12.5 % had plaques in the curvature opposite the OA origin, a location carrying the highest risk for embolization into the OA (according to the CFD model 12.6–13.2 % probability of embolisation into the OA). Also, 15.6 % had plaques in the paraclinoid ICA portion distal to the OA origin.

Conclusions

There were 40.6% of the patients that had plaques in the cavernous and clinoid ICA portions presenting possible sources for embolic material generating RAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kaufmann TA, Leisser C, Schmitz-Rode T, Steinseifer U (2012) Computational analysis of blood flow and emboli to understand retinal artery occlusion. ASAIO J 58(7):4

    Google Scholar 

  2. Kaufmann TA, Leisser C, Gemsa J, Steinseifer U (2014) Analysis of emboli and blood flow in the ophthalmic artery to understand retinal artery occlusion. Biomed Tech (Berl). doi:10.1515/bmt-2014-0002

    Google Scholar 

  3. Leisser C (2010) Hyperlipidaemia and increased systemic blood pressure–is there a connection to retinal artery occlusion? Spektrum Augenheilkd 24(3):154–156

    Article  Google Scholar 

  4. Wang JJ, Cugati S, Knudtson MD, Rochtchina E, Klein R, Klein BE, Wong TY, Mitchell P (2006) Retinal arteriolar emboli and long-term mortality: pooled data analysis from two older populations. Stroke 37(7):1833–1836

    Article  PubMed  Google Scholar 

  5. Leisser C (2012) Risk factors of retinal artery occlusion. Spektrum Augenheilkd 26(4):202–204

    Article  Google Scholar 

  6. Chang YS, Jan RL, Weng SF, Wang JJ, Chio CC, Wei FT, Chu CC (2012) Retinal artery occlusion and the 3-year risk of stroke in Taiwan: a nationwide population-based study. Am J Ophthalmol 154(4):645–652

    Article  PubMed  Google Scholar 

  7. Hayreh SS, Podhajsky PA, Zimmerman MB (2009) Retinal artery occlusion: associated systemic and ophthalmologic abnormalities. Ophthalmology 116(10):1928–1936

    Article  PubMed Central  PubMed  Google Scholar 

  8. Feltgen N, Neubauer A, Jurklies B, Schmoor C, Wanke J, Maier-Lenz H, Schumacher M, EAGLE-Study Group (2006) Multicenter study of the European assesment group for lysis in the eye (EAGLE) for the treatment of central retinal artery occlusion: design issues and implications. EAGLE Study report no. 1. Graefe’s Arch Clin Exp Ophthalmol 244(8):950–956

    Article  CAS  Google Scholar 

  9. Schumacher M, Schmidt D, Jurklies B, Gall C, Wanke I, Schmoor C, Maier-Lenz H, Solymosi L, Brueckmann H, Neubauer AS, Wolf A, Feltgen N, EAGLE-Study Group (2010) Central retinal artery occlusion: local intra-arterial fibrinolysis versus conservative treatment, a multicenter randomized trial. Ophthalmology 117(7):1367–1375

    Article  PubMed  Google Scholar 

  10. Leisser C (2014) Risk factor analysis in patients with retinal artery occlusion with respect to transesophageal echocardiography. Spectrum Augenheilkd. doi:10.1007/s00717-014-0218-5

    Google Scholar 

  11. Leisser C (2014) Are there differences between plaques of the internal carotid artery and aortic arch among patients with retinal artery occlusion and anterior ischemic optic neuropathy? Klin Monatsbl Augenheilkd. doi:10.1055/s-0034-1368574

    PubMed  Google Scholar 

  12. Harloff A, Strecker C, Dudler P, Nussbaumer A, Frydrychowicz A, Olschewski M, Bock J, Stalder AF, Stroh AL, Weiller C, Hennig J, Markl M (2009) Retrograde embolism from the descending aorta: visualisation by multidirectional 3d velocity mapping in cryptogenic stroke. Stroke 40(4):1505–1508

    Article  PubMed  Google Scholar 

  13. Harloff A, Simon J, Brendecke S, Assefa D, Helbing T, Frydrychowicz A, Weber J, Olschewski M, Strecker C, Henning J, Weiller C, Markl M (2010) Complex plaques in the proximal descending aorta: an underestimated embolic source of stroke. Stroke 41(6):1145–1150

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the collaborators of the EAGLE study [8, 9] for generously allowing us to reevaluate 34 of their patients.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leisser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leisser, C., Kaufmann, T.A., Feltgen, N. et al. Distribution of internal carotid artery plaque locations among patients with central retinal artery occlusion in the Eagle study population. Graefes Arch Clin Exp Ophthalmol 253, 1227–1230 (2015). https://doi.org/10.1007/s00417-014-2804-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2804-2

Keywords

Navigation