Skip to main content

Advertisement

Log in

Retinal vessel diameter in normal-tension glaucoma patients with asymmetric progression

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the longitudinal changes in the central retinal vessel diameter in asymmetric progressive normal-tension glaucoma (NTG) patients.

Methods

This study included 27 patients with bilateral NTG without any systemic vascular disease who showed glaucomatous progression in one eye at the mean follow-up of 24.3 months (range, 18–29 months). Progression was determined by the development of new retinal nerve fiber layer (RNFL) defects or widening of pre-existing defects on red-free RNFL photographs. The central retinal arteriolar equivalent (CRAE) and the central retinal venular equivalent (CRVE) were measured at baseline and at the mean follow-up of 24.3 months. We classified the eyes of each patient as either progressed or stable eyes, and compared the differences and changes in the CRAE and CRVE.

Results

No significant inter-eye difference was observed at baseline in the mean CRAE (167.5 ± 22.2 μm vs. 168.2 ± 15.5 μm, p = 0.809) and in the mean CRVE (276.3 ± 18.2 μm vs. 281.6 ± 21.9 μm, p = 0.267) between the progressed and stable eyes. There were significant changes in CRAE in the progressed eyes between baseline and 2 years after baseline (from 167.5 ± 22.2 μm to 146.9 ± 18.0 μm, p < 0.0001), but there were no significant changes in the stable eyes (from 168.2 ± 15.5 μm to 167.5 ± 14.8 μm, p = 0.084).

Conclusions

In our series of NTG patients with asymmetric progression, central retinal artery diameter decreased over time in the progressed eyes, whereas no significant decrease in the central retinal artery diameter was seen in the stable eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collaborative Normal-Tension Glaucoma Study Group (1998) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol 126:487–497

    Article  Google Scholar 

  2. Flammer J, Orgül S, Costa VP et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21:359–393

    Article  PubMed  Google Scholar 

  3. Shoshani YZ, Harris A, Shoja MM et al (2012) Endothelin and its suspected role in the pathogenesis and possible treatment of glaucoma. Curr Eye Res 37:1–11. doi:10.3109/02713683.2011.622849

    Article  CAS  PubMed  Google Scholar 

  4. Emre M, Orgül S, Gugleta K, Flammer J (2004) Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol 88:662–666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Hayreh SS (2001) The blood supply of the optic nerve head and the evaluation of it—myth and reality. Prog Retin Eye Res 20:563–593

    Article  CAS  PubMed  Google Scholar 

  6. Mackenzie PJ, Cioffi GA (2008) Vascular anatomy of the optic nerve head. Can J Ophthalmol 43:308–312. doi:10.3129/i08-042

    Article  PubMed  Google Scholar 

  7. Papastathopoulos KI, Jonas JB (1999) Follow-up of focal narrowing of retinal arterioles in glaucoma. Br J Ophthalmol 83:285–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rader J, Feuer WJ, Anderson DR (1994) Peripapillary vasoconstriction in the glaucomas and the anterior ischemic optic neuropathies. Am J Ophthalmol 117:72–80

    Article  CAS  PubMed  Google Scholar 

  9. Chang M, Yoo C, Kim SW, Kim YY (2011) Retinal vessel diameter, retinal nerve fiber layer thickness, and intraocular pressure in Korean patients with normal-tension glaucoma. Am J Ophthalmol 151:100–105.e1. doi:10.1016/j.ajo.2010.07.025

    Article  PubMed  Google Scholar 

  10. Lee JY, Yoo C, Park J, Kim YY (2012) Retinal vessel diameter in young patients with open-angle glaucoma: comparison between high-tension and normal-tension glaucoma. Acta Ophthalmol 90:e570–e571. doi:10.1111/j.1755-3768.2011.02371.x

    Article  PubMed  Google Scholar 

  11. Kawasaki R, Wang JJ, Rochtchina E et al (2013) Retinal vessel caliber is associated with the 10-year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology 120:84–90. doi:10.1016/j.ophtha.2012.07.007

    Article  PubMed  Google Scholar 

  12. Anderson DR PV (1999) Automated static perimetry. St. Louis: Mosby, p 164

  13. Hoyt WF, Frisén L, Newman NM (1973) Fundoscopy of nerve fiber layer defects in glaucoma. Invest Ophthalmol 12:814–829

    CAS  PubMed  Google Scholar 

  14. Quigley HA, Katz J, Derick RJ et al (1992) An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage. Ophthalmology 99:19–28

    Article  CAS  PubMed  Google Scholar 

  15. Suh MH, Kim DM, Kim YK et al (2010) Patterns of progression of localized retinal nerve fibre layer defect on red-free fundus photographs in normal-tension glaucoma. Eye (Lond) 24:857–863. doi:10.1038/eye.2009.209

    Article  CAS  Google Scholar 

  16. Boden C, Blumenthal EZ, Pascual J et al (2004) Patterns of glaucomatous visual field progression identified by three progression criteria. Am J Ophthalmol 138:1029–1036. doi:10.1016/j.ajo.2004.07.003

    Article  PubMed  Google Scholar 

  17. Hubbard LD, Brothers RJ, King WN et al (1999) Methods for evaluation of retinal microvascular abnormalities associated with hypertension/sclerosis in the Atherosclerosis Risk in Communities Study. Ophthalmology 106:2269–2280

    Article  CAS  PubMed  Google Scholar 

  18. Knudtson MD, Lee KE, Hubbard LD et al (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27:143–149

    Article  PubMed  Google Scholar 

  19. Kim JM, Sae Kim M, Ju Jang H et al (2012) The association between retinal vessel diameter and retinal nerve fiber layer thickness in asymmetric normal tension glaucoma patients. Invest Ophthalmol Vis Sci 53:5609–5614. doi:10.1167/iovs.12-9783

    Article  PubMed  Google Scholar 

  20. Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–1603

    CAS  PubMed  Google Scholar 

  21. Jonas JB, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes. II. Correlations. Invest Ophthalmol Vis Sci 30:1604–1611

    CAS  PubMed  Google Scholar 

  22. Vannas S, Tarkkanen A (1960) Retinal vein occlusion and glaucoma. Tonographic study of the incidence of glaucoma and of its prognostic significance. Br J Ophthalmol 44:583–589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ikram MK, de Jong FJ, Vingerling JR et al (2004) Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study. Invest Ophthalmol Vis Sci 45:2129–2134

    Article  PubMed  Google Scholar 

  24. Wong TY, Islam FMA, Klein R et al (2006) Retinal vascular caliber, cardiovascular risk factors, and inflammation: the multi-ethnic study of atherosclerosis (MESA). Invest Ophthalmol Vis Sci 47:2341–2350. doi:10.1167/iovs.05-1539

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cherecheanu AP, Garhofer G, Schmidl D et al (2013) Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol 13:36–42. doi:10.1016/j.coph.2012.09.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mozaffarieh M, Flammer J (2013) New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 13:43–49. doi:10.1016/j.coph.2012.10.001

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell P, Smith W, Chey T, Healey PR (1997) Open-angle glaucoma and diabetes: the Blue Mountains eye study, Australia. Ophthalmology 104:712–718

    Article  CAS  PubMed  Google Scholar 

  28. Bonomi L, Marchini G, Marraffa M et al (2000) Vascular risk factors for primary open-angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107:1287–1293

    Article  CAS  PubMed  Google Scholar 

  29. Leske MC, Wu S-Y, Hennis A et al (2008) Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115:85–93. doi:10.1016/j.ophtha.2007.03.017

    Article  PubMed  Google Scholar 

  30. Quigley HA, West SK, Rodriguez J et al (2001) The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol 119:1819–1826

    Article  CAS  PubMed  Google Scholar 

  31. Tielsch JM, Katz J, Sommer A et al (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 113:216–221

    Article  CAS  PubMed  Google Scholar 

  32. Wang JJ, Mitchell P, Smith W (1997) Is there an association between migraine headache and open-angle glaucoma? Findings from the Blue Mountains Eye Study. Ophthalmology 104:1714–1719

    Article  CAS  PubMed  Google Scholar 

  33. Broadway DC, Drance SM (1998) Glaucoma and vasospasm. Br J Ophthalmol 82:862–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Flammer J, Konieczka K, Flammer AJ (2013) The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J 4:14. doi:10.1186/1878-5085-4-14

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gugleta K, Waldmann N, Polunina A et al (2013) Retinal neurovascular coupling in patients with glaucoma and ocular hypertension and its association with the level of glaucomatous damage. Graefes Arch Clin Exp Ophthalmol 251:1577–1585. doi:10.1007/s00417-013-2276-9

    Article  CAS  PubMed  Google Scholar 

  36. Olafsdottir OB, Hardarson SH, Gottfredsdottir MS et al (2011) Retinal oximetry in primary open-angle glaucoma. Invest Ophthalmol Vis Sci 52:6409–6413. doi:10.1167/iovs.10-6985

    Article  PubMed  Google Scholar 

  37. Olafsdottir OB, Vandewalle E, Abegão Pinto L et al (2014) Retinal oxygen metabolism in healthy subjects and glaucoma patients. Br J Ophthalmol 98:329–333. doi:10.1136/bjophthalmol-2013-303162

    Article  PubMed  Google Scholar 

  38. Vandewalle E, Abegão Pinto L, Olafsdottir OB et al (2014) Oximetry in glaucoma: correlation of metabolic change with structural and functional damage. Acta Ophthalmol 92:105–110. doi:10.1111/aos.12011

    Article  PubMed  Google Scholar 

  39. Jonas JB, Fernández MC, Naumann GO (1991) Parapapillary atrophy and retinal vessel diameter in nonglaucomatous optic nerve damage. Invest Ophthalmol Vis Sci 32:2942–2947

    CAS  PubMed  Google Scholar 

  40. Leske MC, Heijl A, Hussein M et al (2003) Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol 121:48–56

    Article  PubMed  Google Scholar 

  41. De Moraes CGV, Prata TS, Tello C et al (2009) Glaucoma with early visual field loss affecting both hemifields and the risk of disease progression. Arch Ophthalmol 127:1129–1134. doi:10.1001/archophthalmol.2009.165

    Article  PubMed  Google Scholar 

  42. Teng CCV, De Moraes CG, Prata TS et al (2010) Beta-Zone parapapillary atrophy and the velocity of glaucoma progression. Ophthalmology 117:909–915. doi:10.1016/j.ophtha.2009.10.016

    Article  PubMed  Google Scholar 

  43. Kim M, Kim DM, Park KH et al (2013) Intraocular pressure reduction with topical medications and progression of normal-tension glaucoma: a 12-year mean follow-up study. Acta Ophthalmol 91:e270–e275. doi:10.1111/aos.12082

    Article  PubMed  Google Scholar 

  44. Nakagami T, Yamazaki Y, Hayamizu F (2006) Prognostic factors for progression of visual field damage in patients with normal-tension glaucoma. Jpn J Ophthalmol 50:38–43. doi:10.1007/s10384-005-0273-1

    Article  PubMed  Google Scholar 

  45. Hao H, Sasongko MB, Wong TY et al (2012) Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci 53:5799–5805. doi:10.1167/iovs.11-9326

    Article  PubMed  Google Scholar 

  46. Reber F, Gersch U, Funk RW (2003) Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture. Graefes Arch Clin Exp Ophthalmol 241:140–148. doi:10.1007/s00417-002-0560-1

    Article  CAS  PubMed  Google Scholar 

  47. Kehler AK, Holmgaard K, Hessellund A et al (2007) Variable involvement of the perivascular retinal tissue in carbonic anhydrase inhibitor induced relaxation of porcine retinal arterioles in vitro. Invest Ophthalmol Vis Sci 48:4688–4693. doi:10.1167/iovs.07-0048

    Article  PubMed  Google Scholar 

  48. Howard KP, Klein BEK, Dreyer JO et al (2014) Cross-sectional associations of medication and supplement use with retinal vascular diameter in the Beaver Dam Eye Study. JAMA Ophthalmol 132:23–31. doi:10.1001/jamaophthalmol.2013.6326

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nicola Ferrier (University of Wisconsin, Madison School of Engineering and the Fundus Photograph Reading Center, Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison) for granting permission to use the IVAN software.

Conflict of interest

None of the authors has any commercial or proprietary interests in any of the instruments and materials used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yeon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, TE., Kim, Y.Y. & Yoo, C. Retinal vessel diameter in normal-tension glaucoma patients with asymmetric progression. Graefes Arch Clin Exp Ophthalmol 252, 1795–1801 (2014). https://doi.org/10.1007/s00417-014-2756-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2756-6

Keywords

Navigation