Skip to main content

Advertisement

Log in

High-frequency electric welding: a novel method for improved immediate chorioretinal adhesion in vitreoretinal surgery

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate high-frequency electric welding (HFEW) as a novel technique for retinopexy with improved immediate chorioretinal adhesion

Methods

In a prospective, randomized, experimental study, we examined 104 eyes of 52 rabbits randomly assigned to either standard 810 nm endolaser retinopexy, alternating current 14–16 V or 18–20 V HFEW retinopexy. A full-thickness fragment of eye wall tissue containing the retinopexy was isolated 1 h, 3 days, 1 week, or 1 month respectively after the intervention, and fixed to an analytical electronic scale. A nylon suture passed through the retina was elevated by a biomechanical force elongation tester. The reduction in weight at the time of retinopexy rupture was registered as a measure for retinopexy adhesion strength.

Results

One hour post-exposure, adhesive strengths were significantly higher in both HFEW groups than in controls (212 ± 26.6 mg and 122 ± 16 mg vs 104 ± 10 mg; p = 0.0001 and p = 0.024 respectively) while laser retinopexy did not significantly change adhesive strength (114 ± 14.0 mg, p = 0.149). Subsequent adhesive strengths were significantly increased for all retinopexy techniques: 3 days post-op 14–16 V HFEW 224 ± 30.0 mg (p = 0.001), 18–20 V HFEW 128 ± 15.6 (p = 0.001), laser 131 ± 12.7 mg (p = 0.0007); at 1 week 14–16 HFEW 235 ± 24.7 mg, 18–20 V HFEW 213 ± 22.4 mg, laser 188 ± 18.7 mg (all p ≤ 0.001); 1 month post-op 14–16 V HFEW 275 ± 32.0 mg, 18–20 V HFEW 283 ± 31.0 mg, laser 276 ± 21.7 mg, rspectively (all p ≤  0.0001).

Conclusion

HFEW represents a novel technique for retinopexy during vitreoretinal surgery. It allows firm chorioretinal adhesion immediately after exposure. In non-vitrectomized eyes, using 14–16 V is particularly effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zauberman H (1969) Tensile strength of chorioretinal lesions produced by photocoagulation, diathermy, and cryopexy. Br J Ophthalmol 53:749–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Smiddy WE, Hernandez E (1992) Histopathologic results of retinal diode laser photocoagulation in rabbit eyes. Arch Ophthalmol 110:693–698

    Article  CAS  PubMed  Google Scholar 

  3. Silvola J, Salonen A, Nieminen J, Kokki H (2011) Tissue welding tonsillectomy provides an enhanced recovery compared to that after monopolar electrocautery technique in adults: a prospective randomized clinical trial. Eur Arch Otorhinolaryngol 268: 255–260. doi:10.1007/s00405-00010-01333-00409

    Article  PubMed  Google Scholar 

  4. Karatzias GT, Lachanas VA, Papouliakos SM, Sandris VG (2005) Tonsillectomy using the thermal welding system. ORL J Otorhinolaryngol Relat Spec 67: 225–229

    Article  PubMed  Google Scholar 

  5. McCue JL, Phillips RK (1991) Sutureless intestinal anastomoses. Br J Surg 78:1291–1296

    Article  CAS  PubMed  Google Scholar 

  6. Zadorozhnyy O, Pasyechnikova N, Naumenko V, Lazar Y (2012) Experimental application of high-frequency electric welding of biological tissues for iridoplasty and trabeculectomy. Acta Ophthalmologica 90:0. doi:10.1111/j.1755-3768.2012.F043.x

    Google Scholar 

  7. Pasyechnikova N, Umanets N, Artemov A (2012) High-frequency electro-welding of the tissues of the eyeball posterior part (modified generator EC-300 M1) with the application of the original mono and bipolar set of instruments. Journal of Ophthalmol 2:45–49

  8. Wollensak G, Spoerl E, Wirbelauer C, Pham DT (2004) Influence of indocyanine green staining on the biomechanical strength of porcine internal limiting membrane. Ophthalmologica 218:278–282

    Article  PubMed  Google Scholar 

  9. de Juan E Jr, McCuen B, Tiedeman J (1985) Intraocular tamponade and surface tension. Surv Ophthalmol 30:47–51

    Article  PubMed  Google Scholar 

  10. Hillier RJ, Stappler T, Williams RL, Turner GS, Wong D (2011) The impact of axial length on retinal tamponade for gas, silicone oil, and heavy silicone oil, using an in vitro model. Graefes Arch Clin Exp Ophthalmol 249: 671–675. doi:10.1007/s00417-00010-01579-00413

    Article  PubMed Central  PubMed  Google Scholar 

  11. Folk JC, Sneed SR, Folberg R, Coonan P, Pulido JS (1989) Early retinal adhesion from laser photocoagulation. Ophthalmology 96:1523–1525

    Article  CAS  PubMed  Google Scholar 

  12. Zauberman H, Berman ER (1969) Measurement of adhesive forces between the sensory retina and the pigment epithelium. Exp Eye Res 8:276–283

    Article  CAS  PubMed  Google Scholar 

  13. DeGuillebon H, De la Tribonniere M, Pomerantzeff O (1971) Adhesion between retina and pigment epithelium. Measurement by peeling. Arch Ophthalmol 86:679–684

    Article  CAS  PubMed  Google Scholar 

  14. Zauberman H, de Guillebon H, Holly FJ (1972) Retinal traction in vitro. Biophysical aspects. Invest Ophthalmol 11:46–55

    CAS  PubMed  Google Scholar 

  15. Owczarek FR, Marak GE, Pilkerton AR (1975) Retinal adhesion in light- and dark-adapted rabbits. Invest Ophthalmol 14:353–358

    CAS  PubMed  Google Scholar 

  16. Bose M, Rassow B, Wille M (1981) The strength of retinal sear tissue after argon-, xenon-, and cryocoagulation (author’s transl) Albrecht Von Graefes Arch Klin Exp Ophthalmol 216:291–299

    Article  CAS  PubMed  Google Scholar 

  17. Marmor MF, Abdul-Rahim AS, Cohen DS (1980) The effect of metabolic inhibitors on retinal adhesion and subretinal fluid resorption. Invest Ophthalmol Vis Sci 19:893–903

    CAS  PubMed  Google Scholar 

  18. Kain HL (1984) A new model for examining chorioretinal adhesion experimentally. Arch Ophthalmol 102:608–611

    Article  CAS  PubMed  Google Scholar 

  19. Kwon OW, Kim SY (1995) Changes in adhesive force between the retina and the retinal pigment epithelium by laser photocoagulation in rabbits. Yonsei Med J 36:243–250

    Article  CAS  PubMed  Google Scholar 

  20. Kita M, Negi A, Kawano S, Honda Y (1991) Photothermal, cryogenic, and diathermic effects of retinal adhesive force in vivo. Retina 11:441–444

    Article  CAS  PubMed  Google Scholar 

  21. Kain HL (1984) Chorioretinal adhesion after argon laser photocoagulation. Arch Ophthalmol 102:612–615

    Article  CAS  PubMed  Google Scholar 

  22. Yoon YH, Marmor MF (1988) Rapid enhancement of retinal adhesion by laser photocoagulation. Ophthalmology 95:1385–1388

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Castillo V, Zapata MA, Boixadera A, Fonollosa A, Garcia-Arumi J (2007) Pars plana vitrectomy, laser retinopexy, and aqueous tamponade for pseudophakic rhegmatogenous retinal detachment. Ophthalmology 114: 297–302

    Article  PubMed  Google Scholar 

  24. Bartz-Schmidt U, Szurman P, Wong D, Kirchhof B (2008) New developments in retinal detachment surgery. Ophthalmologe 105:27–36. doi:10.1007/s00347-00007-01662-00342

    Article  CAS  PubMed  Google Scholar 

  25. Umanets ND, Molchanyuk N (2013) Ultrastructural changes of the choroid and retina of a rabbit immediately after the influence of different modes of high frequency electric welding of biological tissues. Ophthalmol Journ 4:67–72

    Google Scholar 

Download references

Acknowledgements

Statistical processing of the study data was performed by Elena Dragomiretskaya, from The Filatov Institute of Eye Diseases and Tissue Therapy AMS of Ukraine.

No payment was received from any organization, public or private, for this study. The Filatov Institute for Eye Diseases and Tissue Therapy granted permission for the use of its vivarium and the 52 examined animals, bearing all costs incurred.

Disclosures

None of the authors holds any financial or proprietary interest in the material presented in this article. A patent concerning welding of the retina, but based on different parameters, is held by the Filatov Institute of Eye Diseases and Tissue Therapy:

Pat. of Ukraine № 69528 A 61 F 9/007 (25.04.2012). Method of intraoperative retinopexy for the treatment of rhegmatogenous retinal detachment. Authors: Pasyechnicova NV, Naumenko VA, Umanets NN, Zavodnaya VS, Levitskiy IM. Owner — State Institution Filatov Institute of Eye Diseases and Tissue Therapy NAMS of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Henrich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umanets, N., Pasyechnikova, N.V., Naumenko, V.A. et al. High-frequency electric welding: a novel method for improved immediate chorioretinal adhesion in vitreoretinal surgery. Graefes Arch Clin Exp Ophthalmol 252, 1697–1703 (2014). https://doi.org/10.1007/s00417-014-2709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-014-2709-0

Keywords

Navigation