Skip to main content

Advertisement

Log in

Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography

  • Glaucoma
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Corneal hysteresis (CH) has been associated with visual field damage in glaucoma and is related to the velocity of perimetric glaucoma progression. We undertook this investigation to determine whether CH is associated with structural markers of glaucoma damage on spectral domain optical coherence tomography (SD-OCT).

Methods

In this retrospective study, 131 patients under glaucoma evaluation were evaluated with SD-OCT (Cirrus; Carl Zeiss Meditec, Dublin, CA) and had CH measurements with the ocular response analyzer (Reichert, Inc., Buffalo, NY). Pearson and partial correlation adjusting for age were preformed to examine the association between CH and variables of interest. Generalized estimating equations were used to construct simple and multiple linear models.

Results

While Pearson correlations were modest overall, CH best correlated with mean deviation (MD; r = 0.19) followed by average retinal nerve fiber layer (RNFL) thickness (r = 0.18) and vertical cup to disc ratio (r = −0.11) in the open angle glaucoma group. In univariable models, CH varied as a function of MD (ß = 0.1, 95 % CI 0.03, 0.1; p < 0.001) and of average RNFL thickness (ß = 0.2, 95 % CI 0.1, 0.4; p = 0.001). In a multivariable analysis including MD, age, average RNFL thickness, and glaucoma status, MD (p = 0.001) and age (p < 0.001) retained significant associations with CH.

Conclusions

In patients under evaluation and treatment for glaucoma, CH was more closely related to visual field MD than to structural markers of glaucoma damage as measured by SD-OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA (2006) Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol 141:868–875

    Article  PubMed  Google Scholar 

  2. De Moraes CV, Hill V, Tello C, Liebmann JM, Ritch R (2012) Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma 21:209–213

    Article  PubMed  Google Scholar 

  3. Mangouritsas G, Morphis G, Mourtzoukos S, Feretis E (2009) Association between corneal hysteresis and central corneal thickness in glaucomatous and non-glaucomatous eyes. Acta Ophthalmol 87:901–905

    Article  PubMed  Google Scholar 

  4. Herndon LW, Weizer JS, Stinnett SS (2004) Central corneal thickness as a risk factor for advanced glaucoma damage. Arch Ophthalmol 122:17–21

    Article  PubMed  Google Scholar 

  5. Anand A, De Moraes CG, Teng CC, Tello C, Liebmann JM, Ritch R (2010) Corneal hysteresis and visual field asymmetry in open angle glaucoma. Invest Ophthalmol Vis Sci 51:6514–6518

    Article  PubMed  Google Scholar 

  6. Morita T, Shoji N, Kamiya K, Fujimura F, Shimizu K (2012) Corneal biomechanical properties in normal-tension glaucoma. Acta Ophthalmol 90:e48–e53

    Article  PubMed  Google Scholar 

  7. Kaushik S, Pandav SS, Banger A, Aggarwal K, Gupta A (2012) Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol 153:840–849

    Article  PubMed  Google Scholar 

  8. Cankaya AB, Anayol A, Ozcelik D, Demirdogen E, Yilmazbas P (2012) Ocular response analyzer to assess corneal biomechanical properties in exfoliation syndrome and exfoliative glaucoma. Graefes Arch Clin Exp Ophthalmol 250:255–260

    Article  PubMed  Google Scholar 

  9. Mwanza JC, Oakley JD, Budenz DL, Anderson DR, Cirrus Optical Coherence Tomography Normative Database Study G (2011) Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology 118:241–248

    Article  PubMed  Google Scholar 

  10. Sharma A, Oakley JD, Schiffman JC, Budenz DL, Anderson DR (2011) Comparison of automated analysis of Cirrus HD OCT spectral-domain optical coherence tomography with stereo photographs of the optic disc. Ophthalmology 118:1348–1357

    Article  PubMed  Google Scholar 

  11. Leung CK, Chiu V, Weinreb RN, Liu S, Ye C, Yu M, Cheung CY, Lai G, Lam DS (2011) Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology 118:1558–1562

    Article  PubMed  Google Scholar 

  12. Shpak AA, Sevostyanova MK, Ogorodnikova SN, Shormaz IN (2012) Comparison of measurement error of Cirrus HD-OCT and Heidelberg Retina Tomograph 3 in patients with early glaucomatous visual field defect. Graefes Arch Clin Exp Ophthalmol 250:271–277

    Article  PubMed  Google Scholar 

  13. Mansouri K, Leite MT, Weinreb RN, Tafreshi A, Zangwill LM, Medeiros FA (2012) Association between corneal biomechanical properties and glaucoma severity. Am J Ophthalmol 153:419–427

    Article  PubMed  Google Scholar 

  14. Ehrlich JR, Haseltine S, Shimmyo M, Radcliffe NM (2010) Evaluation of agreement between intraocular pressure measurements using Goldmann applanation tonometry and Goldmann correlated intraocular pressure by Reichert’s ocular response analyser. Eye 24:1555–1560

    Article  PubMed  CAS  Google Scholar 

  15. Sullivan-Mee M, Katiyar S, Pensyl D, Halverson KD, Qualls C (2012) Relative importance of factors affecting corneal hysteresis measurement. Optom Vis Sci 89:E803–E811

    Article  PubMed  Google Scholar 

  16. Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN (2012) The structure and function relationship in glaucoma: implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci 53:6939–6946

    Article  PubMed  Google Scholar 

  17. Sehi M, Zhang X, Greenfield DS, Chung Y, Wollstein G, Francis BA, Schuman JS, Varma R, Huang D, Advanced Imaging for Glaucoma Study G (2012) Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes. Am J Ophthalmol. doi:10.1016/j.ajo.2012.07.005

    PubMed  Google Scholar 

  18. Ramulu P (2009) Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophthalmol 20:92–98

    Article  PubMed  Google Scholar 

  19. Kotecha A, Elsheikh A, Roberts CR, Zhu H, Garway-Heath DF (2006) Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci 47:5337–5347

    Article  PubMed  Google Scholar 

  20. Kamiya K, Shimizu K, Ohmoto F (2009) Effect of aging on corneal biomechanical parameters using the ocular response analyzer. J Refract Surg 25:888–893

    Article  PubMed  Google Scholar 

  21. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N (2008) Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci 49:3262–3268

    Article  PubMed  Google Scholar 

  22. Bochmann F, Ang GS, Azuara-Blanco A (2008) Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol 246:735–738

    Article  PubMed  Google Scholar 

  23. Lesk MR, Hafez AS, Descovich D (2006) Relationship between central corneal thickness and changes of optic nerve head topography and blood flow after intraocular pressure reduction in open-angle glaucoma and ocular hypertension. Arch Ophthalmol 124:1568–1572

    Article  PubMed  Google Scholar 

  24. Ehrlich JR, Peterson J, Parlitsis G, Kay KY, Kiss S, Radcliffe NM (2011) Peripapillary choroidal thickness in glaucoma measured with optical coherence tomography. Exp Eye Res 92:189–194

    Article  PubMed  CAS  Google Scholar 

  25. Agarwal DR, Ehrlich JR, Shimmyo M, Radcliffe NM (2012) The relationship between corneal hysteresis and the magnitude of intraocular pressure reduction with topical prostaglandin therapy. Br J Ophthalmol 96:254–257

    Article  PubMed  Google Scholar 

  26. Haseltine SJ, Pae J, Ehrlich JR, Shammas M, Radcliffe NM (2012) Variation in corneal hysteresis and central corneal thickness among black, hispanic and white subjects. Acta Ophthalmol 90:e626–631

    Article  PubMed  Google Scholar 

  27. Pensyl D, Sullivan-Mee M, Torres-Monte M, Halverson K, Qualls C (2012) Combining corneal hysteresis with central corneal thickness and intraocular pressure for glaucoma risk assessment. Eye 26:1349–1356

    Article  PubMed  CAS  Google Scholar 

Download references

Funding/Support

This study was supported by the Medical Student Training in Aging Research Program, by the Seth Sprague Educational & Charitable Foundation, by Research to Prevent Blindness and by The American Glaucoma Society through the Mentoring for Advancement of Physician-Scientists award program.

Financial disclosure

NMR has received honoraria from Allergan, Alcon, Merck & Co., Inc., Iridex, Carl Zeiss Meditec and Merge Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan M. Radcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vu, D.M., Silva, F.Q., Haseltine, S.J. et al. Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 251, 1777–1783 (2013). https://doi.org/10.1007/s00417-013-2311-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2311-x

Keywords

Navigation