Skip to main content

Advertisement

Log in

EGF receptor inhibitor erlotinib as a potential pharmacological prophylaxis for posterior capsule opacification

  • Cataract
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Posterior capsule opacification (PCO) is the most frequent complication after cataract surgery, leading to a loss of sight if untreated. Erlotinib might be of therapeutic interest as an effective target agent (selective EGF-tyrosin-kinase-1 inhibitor). In this in-vitro study, erlotinib was evaluated for ocular biocompatibility and its effect on cell proliferation, migration, 3D matrix contraction and spreading of human lens epithelial cells.

Methods

To exclude toxic concentrations, erlotinib was assessed for its biocompatibility on five different human ocular cell types in vitro by the tetrazolium dye-reduction assay (MTT) and the Live–Dead assay. To determine its effect on human lens epithelial cell (HLE-B3) proliferation, the MTT test was performed after incubation with different concentrations of erlotinib. Chemotactic migration was analyzed with the Boyden chamber assay and chemokinetic migration was assessed by time lapse microscopy. Contraction was measured by a 3D collagen type 1 matrix contraction assay, and cell spreading was determined by measuring the cell diameter on a fibronectin coated surface.

Results

The maximum non-toxic concentration of erlotinib was determined to be 100 μM in cell culture. Erlotinib potently inhibits human lens epithelial cell proliferation, with an IC50 of about 10 μM (8.8 μM ± 0.9 μM SD; r 2 = 0.94). Chemotactic migration (p = 0.004) and chemokinetic migration (p = 0.001) were reduced significantly in a concentration-based manner. Erlotinib prevented human lens epithelial cells from matrix contraction (p = 0.001) and cell-spreading (p = 0.001).

Conclusions

Erlotinib might become of clinical relevance for PCO prophylaxis in the future since it displayed good biocompatibility on ocular cells and mitigated human lens epithelial cell proliferation, migration, contraction, and spreading in vitro. Further studies are warranted to evaluate its potential for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. World Health Organisation Prevention of Blindness and Visual Impairment. Priority eye disease: Cataract. Available: http://www.who.int/blindness/causes/priority/en/index1.html. Accessed 18 January 2012

  2. Fine IH, Mojon DS (2010) Minimally invasive ophthalmic surgery. Springer, Berlin, p xiv, 241 pp

    Book  Google Scholar 

  3. Wilson ME, Trivedi RH (2007) The ongoing battle against posterior capsular opacification. Arch Ophthalmol 125(4):555–556

    Article  PubMed  Google Scholar 

  4. Meacock WR, Spalton DJ, Boyce J, Marshall J (2003) The effect of posterior capsule opacification on visual function. Invest Ophthalmol Vis Sci 44(11):4665–4669

    Article  PubMed  Google Scholar 

  5. Wormstone IM (2002) Posterior capsule opacification: a cell biological perspective. Exp Eye Res 74(3):337–347

    Article  PubMed  Google Scholar 

  6. Wormstone IM, Wang L, Liu CSC (2009) Posterior capsule opacification. Exp Eye Res 88(2):257–269

    Article  PubMed  CAS  Google Scholar 

  7. Davison JA (1993) Capsule contraction syndrome. J Cataract Refract Surg 19(5):582–589

    Article  PubMed  CAS  Google Scholar 

  8. Lam H, Visvaraja S (2012) Spontaneous dislocation of intraocular lens as a late complication of uncomplicated cataract surgery: a case series. Clin Exp Optom 95(1):99–102

    Article  PubMed  Google Scholar 

  9. Auffarth GU, Golescu A, Becker KA, Völcker HE (2003) Quantification of posterior capsule opacification with round and sharp edge intraocular lenses. Ophthalmology 110(4):772–780

    Article  PubMed  Google Scholar 

  10. Buehl W, Menapace R, Findl O, Neumayer T, Bolz M, Prinz A (2007) Long-term effect of optic edge design in a silicone intraocular lens on posterior capsule opacification. Am J Ophthalmol 143(6):913–919

    Article  PubMed  Google Scholar 

  11. Sacu S, Menapace R, Buehl W, Rainer G, Findl O (2004) Effect of intraocular lens optic edge design and material on fibrotic capsule opacification and capsulorhexis contraction. J Cataract Refract Surg 30(9):1875–1882

    Article  PubMed  Google Scholar 

  12. Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, Ram J, Auffarth GU (2001) Eradication of posterior capsule opacification. Ophthalmology 108(3):505–518

    Article  PubMed  CAS  Google Scholar 

  13. Vock L, Menapace R, Stifter E, Georgopoulos M, Sacu S, Buehl W (2009) Posterior capsule opacification and neodymium:YAG laser capsulotomy rates with a round-edged silicone and a sharp-edged hydrophobic acrylic intraocular lens 10 years after surgery. J Cataract Refract Surg 35(3):459–465

    Article  PubMed  Google Scholar 

  14. Holweger RR, Marefat B (1997) Intraocular pressure change after Neodymium:YAG capsulotomy. J Cataract Refract Surg 23(1):115–121

    Article  PubMed  CAS  Google Scholar 

  15. Javitt JC, Tielsch JM, Canner JK, Kolb MM, Sommer A, Steinberg EP (1992) National outcomes of cataract extraction. Increased risk of retinal complications associated with Nd:YAG laser capsulotomy. The Cataract Patient Outcomes Research Team. Ophthalmology 99(10):1487–1497, discussion 1497–1498

    PubMed  CAS  Google Scholar 

  16. Newland TJ, Auffarth GU, Wesendahl TA, Apple DJ (1994) Neodymium:YAG laser damage on silicone intraocular lenses. A comparison of lesions on explanted lenses and experimentally produced lesions. J Cataract Refract Surg 20(5):527–533

    Article  PubMed  CAS  Google Scholar 

  17. Sheppard AL, Bashir A, Wolffsohn JS, Davies LN (2010) Accommodating intraocular lenses: a review of design concepts, usage and assessment methods. Clin Exp Optom 93(6):441–452

    Article  PubMed  Google Scholar 

  18. Nishi O, Nakai Y, Mizumoto Y, Yamada Y (1997) Capsule opacification after refilling the capsule with an inflatable endocapsular balloon. J Cataract Refract Surg 23(10):1548–1555

    Article  PubMed  CAS  Google Scholar 

  19. Nishi O, Nishi K, Nishi Y, Chang S (2008) Capsular bag refilling using a new accommodating intraocular lens. J Cataract Refract Surg 34(2):302–309

    Article  PubMed  Google Scholar 

  20. Nishi O (1999) Posterior capsule opacification. Part 1: experimental investigations. J Cataract Refract Surg 25(1):106–117

    Article  PubMed  CAS  Google Scholar 

  21. Awasthi N, Guo S, Wagner BJ (2009) Posterior capsular opacification: a problem reduced but not yet eradicated. Arch Ophthalmol 127(4):555–562

    Article  PubMed  Google Scholar 

  22. Zhang L, Wang N, Zhang W, Chang Z (2008) Suppression of cell proliferation by inhibitors to redox signaling in human lens epithelial cells. Zhonghua Yan Ke Za Zhi 44(7):622–628

    PubMed  Google Scholar 

  23. Kampmeier J, Baldysiak-Figiel A, de Jong-Hesse Y, Lang GK, Lang GE (2006) Effect of growth factors on proliferation and expression of growth factor receptors in a human lens epithelial cell line. J Cataract Refract Surg 32(3):510–514

    Article  PubMed  Google Scholar 

  24. Majima K (1995) Human lens epithelial cells proliferate in response to exogenous EGF and have EGF and EGF receptor. Ophthalmic Res 27(6):356–365

    Article  PubMed  CAS  Google Scholar 

  25. Jiang Q, Zhou C, Bi Z, Wan Y (2006) EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. J Ocul Pharmacol Ther 22(2):93–102

    Article  PubMed  CAS  Google Scholar 

  26. Huang W, Fan X, Tang X (2011) SiRNA targeting EGFR effectively prevents posterior capsular opacification after cataract surgery. Mol Vis 17:2349–2355

    PubMed  CAS  Google Scholar 

  27. Dowell J, Minna JD, Kirkpatrick P (2005) erlotinib hydrochloride. Nat Rev Drug Discov 4(1):13–14

    Article  PubMed  CAS  Google Scholar 

  28. Cohen MH, Johnson JR, Chattopadhyay S, Tang S, Justice R, Sridara R, Pazdur R (2010) Approval summary: erlotinib maintenance therapy of advanced/metastatic non-small cell lung cancer (NSCLC). Oncologist 15(12):1344–1351

    Article  PubMed  CAS  Google Scholar 

  29. FDA (2004) FDA label information for erlotinib [online]. Available: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf. Accessed 11 August 2011

  30. European medicines agency (EMA) Authorisation details of Traceva (erlotinib). Available: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000618/human_med_001077.jsp&mid=WC0b01ac058001d124&jsenabled=true. Accessed 25 January 2012

  31. Mössner J (2010) What’s new in therapy of pancreatic cancer. Dig Dis 28(4–5):679–683

    Article  PubMed  Google Scholar 

  32. Heeger S (2008) Targeted therapy of the epidermal growth factor receptor in the treatment of pancreatic cancer. Recent Results Cancer Res 177:131–136

    Article  PubMed  CAS  Google Scholar 

  33. Lyseng-Williamson KA (2010) erlotinib. Pharmacoeconomics 28(1):75–92

    Article  PubMed  Google Scholar 

  34. Johnson J, Cohen M, Sridhara R, Chen Y, Williams GM, Duan J, Gobburu J, Booth B, Benson K, Leighton J, Hsieh LS, Chidambaram N, Zimmerman P, Pazdur R (2005) Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regimen. Clin Cancer Res 11(18):6414–6421

    Article  PubMed  CAS  Google Scholar 

  35. Ranson M, Shaw H, Wolf J, Hamilton M, McCarthy S, Dean E, Reid A, Judson I (2010) A phase I dose-escalation and bioavailability study of oral and intravenous formulations of erlotinib (Tarceva, OSI-774) in patients with advanced solid tumors of epithelial origin. Cancer Chemother Pharmacol 66(1):53–58

    Article  PubMed  CAS  Google Scholar 

  36. Andley UP, Rhim JS, Chylack LT, Fleming TP (1994) Propagation and immortalization of human lens epithelial cells in culture. Invest Ophthalmol Vis Sci 35(7):3094–3102

    PubMed  CAS  Google Scholar 

  37. Bednarz J, Teifel M, Friedl P, Engelmann K (2000) Immortalization of human corneal endothelial cells using electroporation protocol optimized for human corneal endothelial and human retinal pigment epithelial cells. Acta Ophthalmol Scand 78(2):130–136

    Article  PubMed  CAS  Google Scholar 

  38. Dunn KC, Aotaki-Keen AE, Putkey FR, Hjelmeland LM (1996) ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res 62(2):155–169

    Article  PubMed  CAS  Google Scholar 

  39. Limb GA, Salt TE, Munro PMG, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43(3):864–869

    PubMed  Google Scholar 

  40. Eibl KH, Banas B, Schoenfeld CL, May CA, Neubauer AS, Priglinger S, Kampik A, Welge-Lussen U (2003) Alkylphosphocholines inhibit proliferation of human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 44:3556–3561

    Article  PubMed  Google Scholar 

  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  42. Spitzer MS, Yoeruek E, Sierra A, Wallenfels-Thilo B, Schraermeyer U, Spitzer B, Bartz-Schmidt KU, Szurmann P (2007) Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells. Graefes Arch Clin Exp Ophthalmol 245(12):1837–1842

    Article  PubMed  CAS  Google Scholar 

  43. Neubig RR (2003) International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on terms and symbols in quantitative pharmacology. Pharmacol Rev 55(4):597–606

    Article  PubMed  CAS  Google Scholar 

  44. Collins TJ (2007) ImageJ for microscopy. Biotechniques 43(1 Suppl):25–30

    Article  PubMed  Google Scholar 

  45. Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  PubMed  CAS  Google Scholar 

  46. Mazure A, Grierson I (1992) In vitro studies of the contractility of cell types involved in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 33(12):3407–3416

    PubMed  CAS  Google Scholar 

  47. Shimoyama Y, Kubota T, Watanabe M, Ishibiki K, Abe O (1989) Predictability of in vivo chemosensitivity by in vitro MTT assay with reference to the clonogenic assay. J Surg Oncol 41(1):12–18

    Article  PubMed  CAS  Google Scholar 

  48. Eibl KH, Liegl R, Kernt M, Priglinger S, Kampik A (2009) Alkylphosphocholines as a potential pharmacologic prophylaxis for posterior capsule opacification. J Cataract Refract Surg 35(5):900–905

    Article  PubMed  Google Scholar 

  49. Dreux A, Lamb D, Modjtahedi H, Fe G (2006) The epidermal growth factor receptors and their family of ligands: their putative role in atherogenesis. Atherosclerosis 186(1):38–53

    Article  PubMed  CAS  Google Scholar 

  50. Fleming TP, Song Z, Andley UP (1998) Expression of growth control and differentiation genes in human lens epithelial cells with extended life span. Invest Ophthalmol Vis Sci 39(8):1387–1398

    PubMed  CAS  Google Scholar 

  51. Shigemitsu T, Ishiguro K, Shimizu Y, Horiguchi M, Kasahara M, Arakaki S (1999) Immunocytochemical features of lens after cataract tissue-signalling molecules (growth factors, cytokines, other signalling molecules), cytoskeleton proteins, cellular and extracellular matrix proteins. Int Ophthalmol 23(3):137–144

    Article  PubMed  CAS  Google Scholar 

  52. Ibaraki N, Lin LR, Reddy VN (1995) Effects of growth factors on proliferation and differentiation in human lens epithelial cells in early subculture. Invest Ophthalmol Vis Sci 36(11):2304–2312

    PubMed  CAS  Google Scholar 

  53. Nishi O, Nishi K, Ohmoto Y (1996) Synthesis of interleukin-1, interleukin-6, and basic fibroblast growth factor by human cataract lens epithelial cells. J Cataract Refract Surg 22(Suppl 1):852–858

    Article  PubMed  Google Scholar 

  54. Iyengar L, Patkunanathan B, McAvoy JW, Lovicu FJ (2009) Growth factors involved in aqueous humour-induced lens cell proliferation. Growth Factors 27(1):50–62

    Article  PubMed  CAS  Google Scholar 

  55. Ruíz JM, Medrano M, Alió JL (1990) Inhibition of posterior capsule opacification by 5-fluorouracil in rabbits. Ophthalmic Res 22(4):201–208

    Article  PubMed  Google Scholar 

  56. Power WJ, Neylan D, Collum LM (1994) Daunomycin as an inhibitor of human lens epithelial cell proliferation in culture. J Cataract Refract Surg 20(3):287–290

    Article  PubMed  CAS  Google Scholar 

  57. Walker TD (2008) Pharmacological attempts to reduce posterior capsule opacification after cataract surgery—a review. Clin Exp Ophthalmol 36(9):883–890

    Article  Google Scholar 

  58. Kang S, Kim M, Park S, Joo C (2008) Comparison of clinical results between heparin surface modified hydrophilic acrylic and hydrophobic acrylic intraocular lens. Eur J Ophthalmol 18(3):377–383

    PubMed  CAS  Google Scholar 

  59. Rabsilber TM, Limberger I, Reuland AJ, Holzer MP, Auffarth GU (2007) Long-term results of sealed capsule irrigation using distilled water to prevent posterior capsule opacification: a prospective clinical randomised trial. Br J Ophthalmol 91(7):912–915

    Article  PubMed  Google Scholar 

  60. Pollack VA, Savage DM, Baker DA, Tsaparikos KE, Sloan DE, Moyer JD, Barbacci EG, Pustilnik LR, Smolarek TA, Davis JA, Vaidya MP, Arnold LD, Doty JL, Iwata KK, Morin MJ (1999) Inhibition of epidermal growth factor receptor-associated tyrosine phosphorylation in human carcinomas with CP-358,774: dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 291(2):739–748

    PubMed  CAS  Google Scholar 

  61. Johnson KS, Levin F, Chu DS (2009) Persistent corneal epithelial defect associated with erlotinib treatment. Cornea 28(6):706–707

    Article  PubMed  Google Scholar 

  62. US Food and Drug Administration (2010). Tarceva (erlotinib): full prescribing information. Available: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf. Accessed 19 January 2012

  63. US Food and Drug Administration (2009) Tarceva (erlotinib) May 2009—safety information. Available: http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm150596.htm. Accessed 28 January 2012

  64. Maidment JM, Duncan G, Tamiya S, Collison DJ, Wang L, Wormstone IM (2004) Regional differences in tyrosine kinase receptor signaling components determine differential growth patterns in the human lens. Invest Ophthalmol Vis Sci 45(5):1427–1435

    Article  PubMed  Google Scholar 

  65. Bhuyan DK, Reddy PG, Bhuyan KC (2000) Growth factor receptor gene and protein expressions in the human lens. Mech Ageing Dev 113(3):205–218

    Article  PubMed  CAS  Google Scholar 

  66. Meissner A, Noack T (2008) Proliferation of human lens epithelial cells (HLE-B3) is inhibited by blocking of voltage-gated calcium channels. Pflugers Arch 457(1):47–59

    Article  PubMed  CAS  Google Scholar 

  67. Jiang Q (2012) Dexamethasone inhibits TGF-β2-induced migration of human lens epithelial cells: implications for posterior capsule opacification prevention. Mol Med Rep 5(6):1509–1513

    PubMed  Google Scholar 

  68. Li J, Tang X, Chen X (2011) Comparative effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on proliferation, migration, and extracellular matrix production in a human lens cell line. Exp Eye Res 92(3):173–179

    Article  PubMed  CAS  Google Scholar 

  69. Nebe B, Kunz F, Peters A, Rychly J, Noack T, Beck R (2004) Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells. Graefes Arch Clin Exp Ophthalmol 242(7):597–604

    Article  PubMed  CAS  Google Scholar 

  70. Sun J, Xie L, Wang Y, Liu T (2005) Inhibition of human lens epithelial B-3 cell proliferation by adenovirus-mediated transfer of antisense c-myc construct. Graefes Arch Clin Exp Ophthalmol 243(6):601–606

    Article  PubMed  CAS  Google Scholar 

  71. Wormstone IM, Collison DJ, Hansom SP, Duncan G (2006) A focus on the human lens in vitro. Environ Toxicol Pharmacol 21(2):215–221

    Article  PubMed  CAS  Google Scholar 

  72. Saller MM, Prall WC, Docheva D, Schonitzer V, Popov T, Anz D, Clausen-Schaumann H, Mutschler W, Volkmer E, Schieker M, Polzer H (2012) Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun 423(2):379–385

    Article  PubMed  CAS  Google Scholar 

  73. Yano S, Kondo K, Yamaguchi M, Richmond G, Hutchison M, Wakeling A, Averbuch S, Wadsworth P (2003) Distribution and function of EGFR in human tissue and the effect of EGFR tyrosine kinase inhibition. Anticancer Res 23(5A):3639–3650

    PubMed  CAS  Google Scholar 

  74. Liang C, Tai M, Chang Y, Chen Y, Chen C, Chien MW, Chen JT (2010) Glucosamine inhibits epidermal growth factor-induced proliferation and cell-cycle progression in retinal pigment epithelial cells. Mol Vis 16:2559–2571

    PubMed  CAS  Google Scholar 

  75. Yan F, Hui Y, Li Y, Guo C, Meng H (2007) Epidermal growth factor receptor in cultured human retinal pigment epithelial cells. Ophthalmologica 221(4):244–250

    Article  PubMed  CAS  Google Scholar 

  76. Wilson SE, Lloyd SA, He YG, McCash CS (1993) Extended life of human corneal endothelial cells transfected with the SV40 large T antigen. Invest Ophthalmol Vis Sci 34(6):2112–2123

    PubMed  CAS  Google Scholar 

Download references

Financial interest

Wertheimer C. : NONE, Liegl R. : NONE, Kernt M. : NONE, Wolf A. : NONE, Docheva D. : NONE, Haritoglou C. : NONE, Kampik A. : NONE, Eibl-Lindner KH : NONE

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. H. Eibl-Lindner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wertheimer, C., Liegl, R., Kernt, M. et al. EGF receptor inhibitor erlotinib as a potential pharmacological prophylaxis for posterior capsule opacification. Graefes Arch Clin Exp Ophthalmol 251, 1529–1540 (2013). https://doi.org/10.1007/s00417-013-2257-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-013-2257-z

Keywords

Navigation