Skip to main content

Advertisement

Log in

Assessment of fungal viability after long-wave ultraviolet light irradiation combined with riboflavin administration

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Corneal collagen cross-linking (CXL), a technique that combines riboflavin administration with long-wave ultraviolet light irradiation, was primarily developed to increase the biomechanical strength of collagen fibrils of the cornea to avoid the progression of keratoconus. Recently, this method has been proposed to treat selected cases of infectious keratitis.

Methods

To test the protocol used for progressive keratoconus in infectious keratitis, Candida albicans, and Fusarium solani, strains were exposed to irradiation using a wavelength of 365 nm at a power density of 3 mW/cm2 for 30 min in the presence of riboflavin photosensitizer. All experiments were performed in triplicate. Qualitative and quantitative measurements of fungal viability used plate cultures and an automated trypan blue dye exclusion method respectively. Fungal cell diameter was also assessed in all groups. Statistical analyses were performed using the triplicate values of each experimental condition.

Results

Experimental findings of photodynamic therapy applied to the cell inactivation of both yeasts and filamentous fungi were compared with control groups. Qualitative results were corroborated with quantitative findings which showed no statistical significance between challenged samples (experimental groups) and the control group (p-value = 1). In comparison with a control group of live cells, statistical significance was observed when riboflavin solution alone had an effect on the morphologic size of filamentous fungi, while ultraviolet light irradiation alone showed a slight decrease in the cell structure of C. albicans.

Conclusions

The impact of long-wave ultraviolet combined with riboflavin photosensitizer showed no antifungal effect on C. albicans and F. solani. The significant decrease in cell morphology of both filamentous fungi and yeasts submitted to photosensitizing riboflavin and exposure to ultraviolet light, respectively, may be promising in the development and standardization of alternatives for fungal cell inactivation, because of their minimal cytotoxic effects on the corneal surface. The methodological improvement in the preparation and application of individual chemical compounds, such as riboflavin, or physical systems, such as a long-wave light source, as antifungal agents may also assist in establishing promising therapeutic procedures for keratomycosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tuli SS (2011) Fungal keratitis. Clin Ophthalmol 5:275–279

    Article  PubMed  Google Scholar 

  2. Gopinathan U, Sharma S, Garg P, Rao GN (2009) Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J Ophthalmol 57(4):273–279

    Article  PubMed  Google Scholar 

  3. Chang HY, Chodosh J (2011) Diagnostic and therapeutic considerations in fungal keratitis. Int Ophthalmol Clin 51(4):33–42

    Article  PubMed  Google Scholar 

  4. Mselle J (1999) Fungal keratitis as an indicator of HIV infection in Africa. Trop Doct 29(3):133–135

    PubMed  CAS  Google Scholar 

  5. Thomas PA (2003) Fungal infections of the cornea. Eye (Lond) 17(8):852–862

    Article  CAS  Google Scholar 

  6. Ganegoda N, Rao SK (2004) Antifungal therapy for keratomycoses. Expert Opin Pharmacother 5(4):865–874

    Article  PubMed  CAS  Google Scholar 

  7. Kalkanci A, Ozdek S (2011) Ocular fungal infections. Curr Eye Res 36(3):179–189

    Article  PubMed  Google Scholar 

  8. Vemuganti GK, Garg P, Gopinathan U, Naduvilath TJ, John RK, Buddi R, Rao GN (2002) Evaluation of agent and host factors in progression of mycotic keratitis: a histologic and microbiologic study of 167 corneal buttons. Ophthalmology 109(8):1538–1546

    Article  PubMed  Google Scholar 

  9. Wollensak G, Sporl E, Seiler T (2003) Treatment of keratoconus by collagen cross linking. Ophthalmologe 100(1):44–49

    Article  PubMed  CAS  Google Scholar 

  10. Iseli HPTM, Hafezi F, Kampmeier J, Seiler T (2008) Ultraviolet A/riboflavin corneal cross-linking for infectious keratitis associated with corneal melts. Cornea 27(5):590–594

    Article  PubMed  Google Scholar 

  11. Khan YA, Kashiwabuchi RT, Martins SA, Castro-Combs JM, Kalyani S, Stanley P, Flikier D, Behrens A (2011) Riboflavin and ultraviolet light a therapy as an adjuvant treatment for medically refractive Acanthamoeba keratitis: report of 3 cases. Ophthalmology 118(2):324–331

    Article  PubMed  Google Scholar 

  12. Makdoumi KMJ, Crafoord S (2010) Infectious keratitis treated with corneal crosslinking. Cornea 29(12):1353–1358

    Article  PubMed  Google Scholar 

  13. Micelli Ferrari TLM, Lorusso M, Epifani E, Micelli Ferrari L (2009) Escherichia coli keratitis treated with ultraviolet A/riboflavin corneal cross-linking: a case report. Eur J Ophthalmol 19(2):295–297

    PubMed  Google Scholar 

  14. Moren HMM, Mortensen J, Ohrstrom A (2010) Riboflavin and ultraviolet a collagen crosslinking of the cornea for the treatment of keratitis. Cornea 29(1):102–104

    Article  PubMed  Google Scholar 

  15. Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39(5):877–883

    Article  PubMed  CAS  Google Scholar 

  16. Spoerl EMM, Sliney D, Trokel S, Seiler T (2007) Safety of UVA-riboflavin cross-linking of the cornea. Cornea 26:385–389

    Article  PubMed  Google Scholar 

  17. Ibrahim MM, de Angelis R, Lima AS, Viana de Carvalho GD, Ibrahim FM, Malki LT, de Paula Bichuete M, de Paula Martins W, Rocha EM (2012) A new method to predict the epidemiology of fungal keratitis by monitoring the sales distribution of antifungal eye drops in Brazil. PLoS One 7(3):e33775

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto YMD, Kojima T, Shimazaki J, Tsubota K (2011) The comparison of solitary topical micafungin or fluconazole application in the treatment of Candida fungal keratitis. Br J Ophthalmol 95(10):1406–1409

    Article  PubMed  Google Scholar 

  19. Yavas GFOF, Küsbeci T, Cetinkaya Z, Ermis SS, Kiraz N, Inan UU (2008) Antifungal efficacy of voriconazole, itraconazole and amphotericin b in experimental fusarium solani keratitis. Graefes Arch Clin Exp Ophthalmol 246(2):275–279

    Article  PubMed  CAS  Google Scholar 

  20. Martin MJ, Rahman MR, Johnson GJ, Srinivasan M, Clayton YM (1995) Mycotic keratitis: susceptibility to antiseptic agents. Int Ophthalmol 19(5):299–302

    Article  PubMed  Google Scholar 

  21. Al-Sabai NKC, Tassignon MJ (2010) UVA/riboflavin crosslinking as treatment for corneal melting. Bull Soc Belge Ophtalmol 315:13–17

    PubMed  Google Scholar 

  22. Makdoumi KMJ, Sorkhabi O, Malmvall BE, Crafoord S (2012) UVA-riboflavin photochemical therapy of bacterial keratitis: a pilot study. Graefes Arch Clin Exp Ophthalmol 250(1):95–102

    Article  PubMed  CAS  Google Scholar 

  23. Rama PDMF, Matuska S, Paganoni G, Spinelli A (2009) Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg 35(4):788–791

    Article  PubMed  Google Scholar 

  24. Kashiwabuchi RT, Carvalho FR, Khan YA, de Freitas D, Foronda AS, Hirai FE, Campos MS, McDonnell PJ (2011) Assessing efficacy of combined riboflavin and UV-A light (365 nm) treatment of Acanthamoeba trophozoites. Invest Ophthalmol Vis Sci 52(13):9333–9338

    Article  PubMed  CAS  Google Scholar 

  25. Wiwanitkit V (2010) Bactericidal effect of photo-activated riboflavin using UVA. Graefes Arch Clin Exp Ophthalmol 248(5):755

    Article  PubMed  Google Scholar 

  26. del Buey MACJ, Casas P, Goñi P, Clavel A, Mínguez E, Lanchares E, García A, Calvo B (2012) Evaluation of in vitro efficacy of combined riboflavin and ultraviolet a for Acanthamoeba isolates. Am J Ophthalmol 153(3):399–404

    Article  PubMed  Google Scholar 

  27. Martins SACJ, Noguera G, Camacho W, Wittmann P, Walther R, Cano M, Dick J, Behrens A (2008) Antimicrobial efficacy of riboflavin/UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci 49(8):3402–3408

    Article  PubMed  Google Scholar 

  28. Sauer AL-BV, Speeg-Schatz C, Touboul D, Colin J, Candolfi E, Bourcier T (2010) In vitro efficacy of antifungal treatment using riboflavin/UV-A (365 nm) combination and amphotericin B. Invest Ophthalmol Vis Sci 51(8):3950–3953

    Article  PubMed  Google Scholar 

  29. Ou JI, Acharya NR (2007) Epidemiology and treatment of fungal corneal ulcers. Int Ophthalmol Clin 47(3):7–16

    Article  PubMed  Google Scholar 

  30. Ritterband DCSJ, Shah MK, Koplin RS, McCormick SA (2006) Fungal keratitis at the New York eye and ear infirmary. Cornea 25:264–267

    Article  PubMed  Google Scholar 

  31. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3: Appendix 3B

  32. Szentmáry NGS, Bischoff M, Seitz B (2012) Photodynamic therapy for infectious keratitis. Ophthalmologe 109(2):165–170

    Article  PubMed  Google Scholar 

  33. Chen ZXS, Zhiqun W, Ran L (2008) In vitro amoebacidal activity of photodynamic therapy on Acanthamoeba. Br J Ophthalmol 92(9):1283–1286

    Article  PubMed  CAS  Google Scholar 

  34. Shih MHHF (2011) Effects of photodynamic therapy on rapidly growing nontuberculous mycobacteria keratitis. Invest Ophthalmol Vis Sci 52(1):223–229

    Article  PubMed  Google Scholar 

  35. Wollensak G, Spoerl E, Seiler T (2003) Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 135(5):620–627

    Article  PubMed  CAS  Google Scholar 

  36. Sudhir PV, Ranjan DS, Ganpat AN (2010) Antifungal agents, WO2009025733. Expert Opin Ther Pat 20(1):137–143

    Article  PubMed  CAS  Google Scholar 

  37. Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005–2009). Rev Iberoam Micol 26(1):15–22

    Article  PubMed  Google Scholar 

  38. Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108

    Article  PubMed  CAS  Google Scholar 

  39. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150(Pt 7):2029–2035

    Article  PubMed  CAS  Google Scholar 

  40. Nakagawa Y (2008) Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells. Microbiol Immunol 52(1):16–24

    Article  PubMed  CAS  Google Scholar 

  41. Kaplan JGPW (1956) The action of ultraviolet radiation on yeast catalase. J Gen Physiol 40(1):147–169

    Article  PubMed  CAS  Google Scholar 

  42. Cornforth JWRG, Robinson PM, Park D (1971) Isolation and characterization of a fungal vacuolation factor (bikaverin). J Chem Soc Perkin 1(16):2786–2788

    Google Scholar 

  43. Roberts J (1923) A budrot of the peach caused by a species of fusarium. J Agric Res XXVI(10):507–513

    Google Scholar 

  44. Taff HT NJ, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:(e1002848):

  45. Li JHK, Yumoto H, Matsuo T, Miyake Y, Ichikawa T (2010) Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms. J Appl Microbiol 109:2183–2190

    Article  PubMed  CAS  Google Scholar 

  46. Baillie GSDL (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46:397–403

    Article  PubMed  CAS  Google Scholar 

  47. Marcinkowska JKJ, Marquis LY (1982) Phytotoxic effects of cell-free cultural filtrates of Fusarium solani isolates on virulence, host specificity and resistance. Can J Plant Sci 62:1027–1035

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge a financial support given by an unrestricted grant from Research to Prevent Blindness Inc, NY, NY to the Wilmer Ophthalmological Institute to conduct this study (laboratory supplies).

Financial support

Research to Prevent Blindness Inc, New York, NY provided financial support to the Wilmer Ophthalmological Institute to conduct this study (laboratory supplies). Fabio RS Carvalho was supported by a postdoctoral fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PNPD/CAPES).

Conflict of interest

No conflicting relationship exists for any author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata T. Kashiwabuchi.

Additional information

All authors have full control of all primary data, and we agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review our data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kashiwabuchi, R.T., Carvalho, F.R.S., Khan, Y.A. et al. Assessment of fungal viability after long-wave ultraviolet light irradiation combined with riboflavin administration. Graefes Arch Clin Exp Ophthalmol 251, 521–527 (2013). https://doi.org/10.1007/s00417-012-2209-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2209-z

Keywords

Navigation