Skip to main content
Log in

Functional neural substrates of posterior cortical atrophy patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Posterior cortical atrophy (PCA) is a neurodegenerative syndrome in which the most pronounced pathologic involvement is in the occipito-parietal visual regions. Herein, we aimed to better define the cortical reflection of this unique syndrome using a thorough battery of behavioral and functional MRI (fMRI) tests. Eight PCA patients underwent extensive testing to map their visual deficits. Assessments included visual functions associated with lower and higher components of the cortical hierarchy, as well as dorsal- and ventral-related cortical functions. fMRI was performed on five patients to examine the neuronal substrate of their visual functions. The PCA patient cohort exhibited stereopsis, saccadic eye movements and higher dorsal stream-related functional impairments, including simultant perception, image orientation, figure-from-ground segregation, closure and spatial orientation. In accordance with the behavioral findings, fMRI revealed intact activation in the ventral visual regions of face and object perception while more dorsal aspects of perception, including motion and gestalt perception, revealed impaired patterns of activity. In most of the patients, there was a lack of activity in the word form area, which is known to be linked to reading disorders. Finally, there was evidence of reduced cortical representation of the peripheral visual field, corresponding to the behaviorally assessed peripheral visual deficit. The findings are discussed in the context of networks extending from parietal regions, which mediate navigationally related processing, visually guided actions, eye movement control and working memory, suggesting that damage to these networks might explain the wide range of deficits in PCA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beh SC, Muthusamy B, Calabresi P et al (2015) Hiding in plain sight: a closer look at posterior cortical atrophy. Pract Neurol 15(1):5–13. doi:10.1136/practneurol-2014-000883

    Article  PubMed  Google Scholar 

  2. Benson D, Davis R, Snyder B (1988) Posterior cortical atrophy. Arch Neurol 7:193–203. doi:10.1684/pnv.2009.0169

    Google Scholar 

  3. Alves J, Soares JM, Sampaio A (2013) Posterior cortical atrophy and Alzheimer’s disease: a meta-analytic review of neuropsychological and brain morphometry studies. Brain Imaging Behav 7:353–361. doi:10.1007/s11682-013-9236-1

    Article  PubMed  Google Scholar 

  4. McMonagle P, Deering F, Berliner Y, Kertesz A (2006) The cognitive profile of posterior cortical atrophy. Neurology 66:331–338. doi:10.1212/01.wnl.0000196477.78548.db

    Article  PubMed  Google Scholar 

  5. Formaglio M, Costes N, Seguin J et al (2011) In vivo demonstration of amyloid burden in posterior cortical atrophy: a case series with PET and CSF findings. J Neurol 258:1841–1851. doi:10.1007/s00415-011-6030-0

    Article  PubMed  Google Scholar 

  6. Mendez MF, Ghajarania M, Perryman KM (2002) Posterior cortical atrophy: clinical characteristics and differences compared to Alzheimer’s disease. Dement Geriatr Cogn Disord 14:33–40. doi:10.1159/000058331

    Article  PubMed  Google Scholar 

  7. Kas A, de Souza LC, Samri D et al (2011) Neural correlates of cognitive impairment in posterior cortical atrophy. Brain 134:1464–1478. doi:10.1093/brain/awr055

    Article  PubMed  Google Scholar 

  8. Lehmann M, Crutch SJ, Ridgway GR et al (2011) Cortical thickness and voxel-based morphometry in posterior cortical atrophy and typical Alzheimer’s disease. NBA 32:1466–1476. doi:10.1016/j.neurobiolaging.2009.08.017

    Google Scholar 

  9. Garzia RP, Richman JE, Nicholson SB et al (1990) A new visual-verbal saccade test: the development eye movement test (DEM). J Am Optom Assoc 61:124–135

    CAS  PubMed  Google Scholar 

  10. Katz J, Sommer A, Gaasterland DE et al (1991) Comparison of analytic algorithms for detecting glaucomatous visual field loss. Arch Ophthalmol 109:1684–1689. doi:10.1001/archopht.1991.01080120068028

    Article  CAS  PubMed  Google Scholar 

  11. Brown T, Elliott S (2011) Factor structure of the Motor-Free Visual Perception Test-3rd edition (MVPT-3). Can J Occup Ther 78:26–36. doi:10.2182/cjot.2011.78.1.4

    Article  PubMed  Google Scholar 

  12. Nicholas LE, Brookshire RH (1993) A system for quantifying the informativeness and efficiency of the connected speech of adults with aphasia. J Speech Lang Hear Res 36:338–350. doi:10.1044/jshr.3602.338

    Article  CAS  Google Scholar 

  13. LaBarge E, Edwards D, Knesevich JW (1986) Performance of normal elderly on the Boston Naming Test. Brain Lang 27:380–384. doi:10.1016/0093-934X(86)90026-X

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann M, Keiseb J, Moodley J et al (2002) Appropriate neurological evaluation and multimodality magnetic resonance imaging in eclampsia. Acta Neurol Scand 106:159–167. doi:10.1034/j.1600-0404.2002.01255.x

    Article  CAS  PubMed  Google Scholar 

  15. Liberman J, Stewart W, Seines O et al (1994) Rater agreement for the Rey-Osterrieth Complex Figure Test. J Clin Psychol 50:615–624. doi:10.1002/1097-4679(199407)50:4<615:AID-JCLP2270500419>3.0.CO;2-R

    Article  CAS  PubMed  Google Scholar 

  16. Gollin ES (1960) Developmental studies of visual recognition of incomplete objects. Percept Mot Skills 11:289–298. doi:10.2466/pms.1960.11.3.289

    Article  Google Scholar 

  17. Greve KW, Lindberg RF, Bianchini KJ et al (2000) Construct validity and predictive value of the Hooper Visual Organization Test in stroke rehabilitation. Appl Neuropsychol 7:215–222. doi:10.1016/0887-6177(94)00049-V

    Article  CAS  PubMed  Google Scholar 

  18. Della Sala S, Laiacona M, Trivelli C et al (1995) Poppelreuter-Ghent’s overlapping figures test: its sensitivity to age, and its clinical use. Arch Clin Neuropsychol 10:511–534. doi:10.1016/0887-6177(94)00049-V

    Article  CAS  PubMed  Google Scholar 

  19. Pillon B, Dubois B, Bonnet AM et al (1989) Cognitive slowing in Parkinson’s disease fails to respond to levodopa treatment: the 15-objects test. Neurology 39:762–768. doi:10.1212/WNL.39.6.762

    Article  CAS  PubMed  Google Scholar 

  20. Braddick O, Atkinson J, Wattam-Bell J (2003) Normal and anomalous development of visual motion processing: motion coherence and “dorsal-stream vulnerability”. Neuropsychologia 41:1769–1784. doi:10.1016/S0028-3932(03)00178-7

    Article  PubMed  Google Scholar 

  21. Rainville C, Marchand N, Passini R (2002) Performances of patients with a dementia of the Alzheimer type in the Standardized Road-Map test of Direction Sense. Neuropsychologia 40:567–573. doi:10.1016/S0028-3932(01)00133-6

    Article  CAS  PubMed  Google Scholar 

  22. Navon D (2003) What does a compound letter tell the psychologist’s mind? Acta Psychol (Amst) 114:273–309. doi:10.1016/j.actpsy.2003.06.002

    Article  Google Scholar 

  23. Thomas C, Kveraga K, Huberle E et al (2012) Enabling global processing in simultanagnosia by psychophysical biasing of visual pathways. Brain 135:1578–1585. doi:10.1093/brain/aws066

    Article  PubMed Central  PubMed  Google Scholar 

  24. Treisman A (1985) Preattentive processing in vision. Comput Vision Gr Image Process 31:156–177. doi:10.1016/S0734-189X(85)80004-9

    Article  Google Scholar 

  25. Avidan G, Hasson U, Malach R et al (2005) Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional neuroimaging findings. J Cogn Neurosci 17:1150–1167. doi:10.1162/0898929054475145

    Article  PubMed  Google Scholar 

  26. Grill-Spector K, Kushnir T, Edelman S et al (1999) Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24:187–203. doi:10.1016/S0896-6273(00)80832-6

    Article  CAS  PubMed  Google Scholar 

  27. Cohen L, Lehéricy S, Chochon F et al (2002) Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125:1054–1069. doi:10.1093/brain/awf094

    Article  PubMed  Google Scholar 

  28. Tootell RB, Reppas JB, Kwong KK et al (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230

    CAS  PubMed  Google Scholar 

  29. Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb Cortex 7:181–192. doi:10.1093/cercor/7.2.181

    Article  CAS  PubMed  Google Scholar 

  30. Boynton GM, Engel SA, Glover GH et al (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 16:4207–4221

    CAS  PubMed  Google Scholar 

  31. Talairach J, Tournoux P (1988) Co-planar stereotaxis atlas of the human brain

  32. Lee SY, Koo NK (2005) Change of stereoacuity with aging in normal eyes. Korean J Ophthalmol 19:136–139. doi:10.3341/kjo.2005.19.2.136

    Article  PubMed  Google Scholar 

  33. Sampedro A, Richman J, Pardo M (2003) The Adult Developmental Eye Movement Test (ADEM). J Behav Optom 14:101–105

    Google Scholar 

  34. Colarusso R, Hammill D (2003) MVPT-3: Motor-Free Visual Perception Test (MVPT)

  35. Han AR, Kim DY, Choi TW et al (2014) Characteristics of visual-perceptual function measured by the motor-free visual perception test-3 in Korean adults. Ann Rehabil Med 38:548–553. doi:10.5535/arm.2014.38.4.548

    Article  PubMed Central  PubMed  Google Scholar 

  36. Tamkin AS, Jacobsen R (1984) Age-related norms for the Hooper Visual Organization Test. J Clin Psychol 40:1459–1463. doi:10.1002/1097

    Article  CAS  PubMed  Google Scholar 

  37. Alegret M, Boada-Rovira M, Vinyes-Junqué G et al (2009) Detection of visuoperceptual deficits in preclinical and mild Alzheimer’s disease. J Clin Exp Neuropsychol 31:860–867. doi:10.1080/13803390802595568

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shin MS, Park SY, Park SR et al (2006) Clinical and empirical applications of the Rey-Osterrieth Complex Figure Test. Nat Protoc 1:892–899. doi:10.1038/nprot.2006.115

    Article  PubMed  Google Scholar 

  39. Armstrong CL, Cloud B (1998) The emergence of spatial rotation deficits in dementia and normal aging. Neuropsychology 12:208–217. doi:10.1037/0894-4105.12.2.208

    Article  CAS  PubMed  Google Scholar 

  40. Brewer AA, Barton B (2014) Visual cortex in aging and Alzheimer’s disease: changes in visual field maps and population receptive fields. Front Psychol 5:74. doi:10.3389/fpsyg.2014.00074

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sauer J, Ffytche DH, Ballard C et al (2006) Differences between Alzheimer’s disease and dementia with Lewy bodies: an fMRI study of task-related brain activity. Brain 129:1780–1788. doi:10.1093/brain/awl102

    Article  PubMed  Google Scholar 

  42. Grill-Spector K, Knouf N, Kanwisher N (2004) The fusiform face area subserves face perception, not generic within-category identification. Nat Neurosci 7:555–562. doi:10.1038/nn1224

    Article  CAS  PubMed  Google Scholar 

  43. Huberle E, Karnath HO (2012) The role of temporo-parietal junction (TPJ) in global Gestalt perception. Brain Struct Funct 217:735–746. doi:10.1007/s00429-011-0369-y

    Article  PubMed  Google Scholar 

  44. Tang-Wai DF, Graff-Radford NR, Boeve BF et al (2004) Clinical, genetic, and neuropathologic characteristics of posterior cortical atrophy. Neurology 63:1168–1174. doi:10.1212/01.WNL.0000140289.18472.15

    Article  CAS  PubMed  Google Scholar 

  45. Aresi A, Giovagnoli AR (2009) The role of neuropsychology in distinguishing the posterior cortical atrophy syndrome and Alzheimer’s disease. J Alzheimer Dis 18:65–70. doi:10.3233/JAD-2009-1123

    Google Scholar 

  46. Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804. doi:10.1016/S0896-6273(02)01091-7

    Article  CAS  PubMed  Google Scholar 

  47. Schmidtke K, Talazko J, Hüll PKSM (2005) Posterior cortical atrophy: variant of Alzheimer’s disease? A case series with PET findings. J Neurol 252:27–35. doi:10.1007/s00415-005-0594-5

    Article  PubMed  Google Scholar 

  48. Andrade K, Kas A, Valabrègue R et al (2012) Visuospatial deficits in posterior cortical atrophy: structural and functional correlates. J Neurol Neurosurg Psychiatry 83:860–863. doi:10.1136/jnnp-2012-302278

    Article  PubMed  Google Scholar 

  49. Taylor J-P, Firbank MJ, He J et al (2012) Visual cortex in dementia with Lewy bodies: magnetic resonance imaging study. Br J Psychiatry 200:491–498. doi:10.1192/bjp.bp.111.099432

    Article  PubMed Central  PubMed  Google Scholar 

  50. Yong KXX, Shakespeare TJ, Cash D et al (2014) (Con)text-specific effects of visual dysfunction on reading in posterior cortical atrophy. Cortex 57:92–106. doi:10.1016/j.cortex.2014.03.010

    Article  PubMed Central  PubMed  Google Scholar 

  51. Cohen L, Martinaud O, Lemer C et al (2003) Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cereb Cortex 13:1313–1333. doi:10.1093/cercor/bhg079

    Article  CAS  PubMed  Google Scholar 

  52. Gaillard R, Naccache L, Pinel P et al (2006) Direct intracranial, fMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50:191–204. doi:10.1016/j.neuron.2006.03.031

    Article  CAS  PubMed  Google Scholar 

  53. Starrfelt R, Habekost T, Leff AP (2009) Too little, too late: reduced visual span and speed characterize pure alexia. Cereb Cortex 19:2880–2890. doi:10.1093/cercor/bhp059

    Article  PubMed Central  PubMed  Google Scholar 

  54. Vogel AC, Miezin FM, Petersen SE, Schlaggar BL (2012) The putative visual word form area is functionally connected to the dorsal attention network. Cereb Cortex 22:537–549. doi:10.1093/cercor/bhr100

    Article  PubMed Central  PubMed  Google Scholar 

  55. Pitzalis S, Galletti C, Huang R-S et al (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26:7962–7973. doi:10.1523/JNEUROSCI.0178-06.2006

    Article  CAS  PubMed  Google Scholar 

  56. Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118:1303–1314. doi:10.1016/j.clinph.2007.01.023

    Article  PubMed  Google Scholar 

  57. Kravitz DJ, Saleem KS, Baker CI et al (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230. doi:10.1038/nrn3008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors report no financial disclosure.

Ethical standards

The study was approved by the Hadassah Hebrew University Medical Center Ethics Committee and all patients signed a consent form allowing their participation in the study. The research has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Netta Levin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shames, H., Raz, N. & Levin, N. Functional neural substrates of posterior cortical atrophy patients. J Neurol 262, 1751–1761 (2015). https://doi.org/10.1007/s00415-015-7774-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7774-8

Keywords

Navigation