Skip to main content

Advertisement

Log in

A new mutation in GJC2 associated with subclinical leukodystrophy

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Recessive mutations in GJC2, the gene-encoding connexin 47 (Cx47), cause Pelizaeus–Merzbacher-like disease type 1, a severe dysmyelinating disorder. One recessive mutation (p.Ile33Met) has been associated with a much milder phenotype––hereditary spastic paraplegia type 44. Here, we present evidence that a novel Arg98Leu mutation causes an even milder phenotype––a subclinical leukodystrophy. The Arg98Leu mutant forms gap junction plaques in HeLa cells comparable to wild-type Cx47, but electrical coupling was 20-fold lower in cell pairs expressing Arg98Leu than for cell pairs expressing wild-type Cx47. On the other hand, coupling between Cx47Arg98Leu and Cx43WT expressing cells did not show such reductions. Single channel conductance and normalized steady-state junctional conductance–junctional voltage (G jV j) relations differed only slightly from those for wild-type Cx47. Our data suggest that the minimal phenotype in this patient results from a reduced efficiency of opening of Cx47 channels between oligodendrocyte and oligodendrocyte with preserved coupling between oligodendrocyte and astrocyte, and support a partial loss of function model for the mild Cx47 associated disease phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abrams CK, Freidin MM, Verselis VK, Bennett MV, Bargiello TA (2001) Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot–Marie–Tooth disease. Brain Res 900:9–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Abrams CK, Islam M, Mahmoud R, Kwon T, Bargiello TA, Freidin MM (2013) Functional requirement for a highly conserved charged residue at position 75 in the gap junction protein connexin 32. J Biol Chem 288:3609–3619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Abrams CK, Scherer SS (2012) Gap junctions in inherited human disorders of the central nervous system. Biochim Biophys Acta 1818:2030–2047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Anand G, Maheshwari N, Roberts D, Padeniya A, Hamilton-Ayers M, van der Knaap M, Fratter C, Jayawant S (2010) X-linked hereditary motor sensory neuropathy (type 1) presenting with a stroke-like episode. Dev Med Child Neurol 52:677–679

    Article  PubMed  Google Scholar 

  5. Balice-Gordon RJ, Bone LJ, Scherer SS (1998) Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142:1095–1104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bukauskas FF, Jordan K, Bukauskiene A, Bennett MV, Lampe PD, Laird DW, Verselis VK (2000) Clustering of connexin 43-enhanced green fluorescent protein gap junction channels and functional coupling in living cells. Proc Natl Acad Sci USA 97:2556–2561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Combes P, Kammoun N, Monnier A, Gonthier-Guéret C, Giraud G, Bertini E, Chahnez T, Fakhfakh F, Boespflug-Tanguy O, Vaurs-Barrière C (2012) Relevance of GJC2 promoter mutation in Pelizaeus–Merzbacher-like disease. Ann Neurol 71:146

    Article  CAS  PubMed  Google Scholar 

  8. Fusco C, Frattini D, Pisani F, Spaggiari F, Ferlini A, Della Giustina E (2010) Coexistent central and peripheral nervous system involvement in a Charcot–Marie–Tooth syndrome X-linked patient. J Child Neurol 25:759–763

    Article  PubMed  Google Scholar 

  9. Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125:551–561

    Article  PubMed  Google Scholar 

  10. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  CAS  PubMed  Google Scholar 

  11. Halbrich M, Barnes J, Bunge M, Joshi C (2008) A V139M mutation also causes the reversible CNS phenotype in CMTX. Can J Neurol Sci 35:372–374

    Article  PubMed  Google Scholar 

  12. Hanemann CO, Bergmann C, Senderek J, Zerres K, Sperfeld AD (2003) Transient, recurrent, white matter lesions in X-linked Charcot–Marie–Tooth disease with novel connexin 32 mutation. Arch Neurol 60:605–609

    Article  PubMed  Google Scholar 

  13. Hobson GM, Garbern JY (2012) Pelizaeus–Merzbacher disease, Pelizaeus–Merzbacher-like disease 1, and related hypomyelinating disorders. Semin Neurol 32:62–67

    Article  PubMed  Google Scholar 

  14. Karadima G, Panas M, Floroskufi P, Kalfakis N, Vassilopoulos D (2006) Four novel connexin 32 mutations in X-linked Charcot–Marie–Tooth disease with phenotypic variability. J Neurol 253:263–264

    Article  CAS  PubMed  Google Scholar 

  15. Kassubek J, Bretschneider V, Sperfeld AD (2005) Corticospinal tract MRI hyperintensity in X-linked Charcot–Marie–Tooth disease. J Clin Neurosci 12:588–589

    Article  PubMed  Google Scholar 

  16. Kleopa KA, Zamba-Papanicolaou E, Alevra X, Nicolaou P, Georgiou DM, Hadjisavvas A, Kyriakides T, Christodoulou K (2006) Phenotypic and cellular expression of two novel connexin32 mutations causing CMT1X. Neurology 66:396–402

    Article  CAS  PubMed  Google Scholar 

  17. Kumar NM, Gilula NB (1996) The gap junction communication channel. Cell 84:381–388

    Article  CAS  PubMed  Google Scholar 

  18. Lee MJ, Nelson I, Houlden H, Sweeney MG, Hilton-Jones D, Blake J, Wood NW, Reilly MM (2002) Six novel connexin32 (GJB1) mutations in X-linked Charcot–Marie–Tooth disease. J Neurol Neurosurg Psychiatry 73:304–306

    Article  PubMed Central  PubMed  Google Scholar 

  19. Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H (2010) Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 58:1104–1117

  20. Magnotti LM, Goodenough DA, Paul DL (2011) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59:26–34

    Article  PubMed Central  PubMed  Google Scholar 

  21. May D, Tress O, Seifert G, Willecke K (2013) Connexin47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin43 protein in astrocytes. J Neurosci 33:7985–7996

  22. Menichella DM, Majdan M, Awatramani R, Goodenough DA, Sirkowski E, Scherer SS, Paul DL (2006) Genetic and physiological evidence that oligodendrocyte gap junctions contribute to spatial buffering of potassium released during neuronal activity. J Neurosci 26:10984–10991

    Article  CAS  PubMed  Google Scholar 

  23. Nezu A, Kimura S, Uehara S, Osaka H, Kobayashi T, Haraguchi M, Inoue K, Kawanishi C (1996) Pelizaeus–Merzbacher-like disease: female case report. Brain Dev 18:114–118

    Article  CAS  PubMed  Google Scholar 

  24. Nicholson G, Corbett A (1996) Slowing of central conduction in X-linked Charcot–Marie–Tooth neuropathy shown by brain stem auditory evoked responses. J Neurol Neurosurg Psychiatry 61:43–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nicholson GA, Yeung L, Corbett A (1998) Efficient neurophysiologic selection of X-linked Charcot–Marie–Tooth families: ten novel mutations. Neurology 51:1412–1416

    Article  CAS  PubMed  Google Scholar 

  26. Oh S, Ri Y, Bennett MV, Trexler EB, Verselis VK, Bargiello TA (1997) Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot–Marie–Tooth disease. Neuron 19:927–938

    Article  CAS  PubMed  Google Scholar 

  27. Orthmann-Murphy JL, Enriquez AD, Abrams CK, Scherer SS (2007) Loss-of-function GJA12/Connexin47 mutations cause Pelizaeus–Merzbacher-like disease. Mol Cell Neurosci 34:629–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    Article  CAS  PubMed  Google Scholar 

  29. Orthmann-Murphy JL, Salsano E, Abrams CK, Bizzi A, Uziel G, Freidin MM, Lamantea E, Zeviani M, Scherer SS, Pareyson D (2009) Hereditary spastic paraplegia is a novel phenotype for GJA12/GJC2 mutations. Brain 132:426–438

    Article  PubMed Central  PubMed  Google Scholar 

  30. Osaka H, Hamanoue H, Yamamoto R, Nezu A, Sasaki M, Saitsu H, Kurosawa K, Shimbo H, Matsumoto N, Inoue K (2010) Disrupted SOX10 regulation of GJC2 transcription causes Pelizaeus–Merzbacher-like disease. Ann Neurol 68:250–254

    CAS  PubMed  Google Scholar 

  31. Panas M, Karadimas C, Avramopoulos D, Vassilopoulos D (1998) Central nervous system involvement in four patients with Charcot–Marie–Tooth disease with connexin 32 extracellular mutations. J Neurol Neurosurg Psychiatry 65:947–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Paulson HL, Garbern JY, Hoban TF, Krajewski KM, Lewis RA, Fischbeck KH, Grossman RI, Lenkinski R, Kamholz JA, Shy ME (2002) Transient central nervous system white matter abnormality in X-linked Charcot–Marie–Tooth disease. Ann Neurol 52:429–434

    Article  CAS  PubMed  Google Scholar 

  33. Pereda AE, Rash JE, Nagy JI, Bennett MV (2004) Dynamics of electrical transmission at club endings on the Mauthner cells. Brain Res Brain Res Rev 47:227–244

    Article  CAS  PubMed  Google Scholar 

  34. Rosser T, Muir J, Panigrahy A, Baldwin EE, Boles RG (2010) Transient leukoencephalopathy associated with X-linked Charcot–Marie–Tooth disease. J Child Neurol 25:1013–1016

    Article  PubMed  Google Scholar 

  35. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed Central  PubMed  Google Scholar 

  36. Schelhaas HJ, Van Engelen BG, Gabreels-Festen AA, Hageman G, Vliegen JH, Van Der Knaap MS, Zwarts MJ (2002) Transient cerebral white matter lesions in a patient with connexin 32 missense mutation. Neurology 59:2007–2008

    Article  CAS  PubMed  Google Scholar 

  37. Siskind C, Feely SM, Bernes S, Shy ME, Garbern JY (2009) Persistent CNS dysfunction in a boy with CMT1X. J Neurol Sci 279:109–113

    Article  PubMed  Google Scholar 

  38. Sohl G, Willecke K (2003) An update on connexin genes and their nomenclature in mouse and man. Cell Commun Adhes 10:173–180

    Article  PubMed  Google Scholar 

  39. Srinivasan J, Leventer RJ, Kornberg AJ, Dahl HH, Ryan MM (2008) Central nervous system signs in X-linked Charcot–Marie–Tooth disease after hyperventilation. Pediatr Neurol 38:293–295

    Article  PubMed  Google Scholar 

  40. Taylor RA, Simon EM, Marks HG, Scherer SS (2003) The CNS phenotype of X-linked Charcot–Marie–Tooth disease: more than a peripheral problem. Neurology 61:1475–1478

    Article  PubMed  Google Scholar 

  41. Teubner B, Odermatt B, Guldenagel M, Sohl G, Degen J, Bukauskas F, Kronengold J, Verselis VK, Jung YT, Kozak CA, Schilling K, Willecke K (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21:1117–1126

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Wasseff SK, Scherer SS (2011) Cx32 and Cx47 mediate oligodendrocyte: astrocyte and oligodendrocyte:oligodendrocyte gap junction coupling. Neurobiol Dis 42:506–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Multiple Sclerosis Society (C.K.A. and S.S.S.) and National Institutes of Health (NIH) Grants: NS055284 (to S.S.S.), and NS067404 (to C.K.A.) and the Pierfranco and Luisa Mariani Foundation, Italy (E.L.).

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Abrams.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 67 kb)

Supplementary material 2 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrams, C.K., Scherer, S.S., Flores-Obando, R. et al. A new mutation in GJC2 associated with subclinical leukodystrophy. J Neurol 261, 1929–1938 (2014). https://doi.org/10.1007/s00415-014-7429-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7429-1

Keywords

Navigation