Skip to main content

Advertisement

Log in

Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Previous studies demonstrated cognitive impairments in spinocerebellar ataxia type 3 (SCA3/MJD); however, there is no consensus about the cognitive domains affected and the correlation with structural brain abnormalities. We investigated the neuropsychological profile and 3T-MRI findings, including high-resolution T1-images, diffusion tensor imaging and magnetic resonance spectroscopy of 32 patients with SCA3/MJD and 32 age-, gender- and educational level–matched healthy controls. We reviewed patients’ clinical history and CAG repeat length, and performed assessment and rating of ataxia (SARA)-Brazilian version and the neuropsychiatric inventory. Patients presented worse performance in episodic and working memory and Beck inventories (depression and anxiety). SCA3/MJD patients had a reduction of gray matter volume (GM) in the cerebellum, putamen, cingulum, precentral and parietal lobe. A positive correlation was identified between the cognitive findings and GM of temporal, frontal, parietal, culmen and insula. We observed positive correlation between the brainstem′s fractional anisotropy and digit span-forward. The following cerebellar metabolite groups (measured relative to creatine) were reduced in patients: N-acetyl-aspartate (NAA), NAA + N-acetyl-aspartate-glutamate and glutamate + glutamine (Glx). We found a positive correlation between Corsi’s block-tapping task forward with Glx; semantic verbal fluency with phosphorylcholine and glycerophosphorylcholine; digits span-forward with NAA. The cognitive impairments in SCA3/MJD are associated not only with cerebellar and brainstem abnormalities, but also with neuroimaging evidence of diffuse neuronal and axonal dysfunction, particularly in temporal, frontal, parietal and insular areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S et al (1994) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  PubMed  CAS  Google Scholar 

  2. Schmahmann JD, Sherman JC (1998) The cerebellar cognitive affective syndrome. Brain 121:561–579

    Article  PubMed  Google Scholar 

  3. Rub U, Brunt ER, Deller T (2008) New insights into the pathoanatomy of spinocerebellar ataxia type 3/Machado–Joseph disease. Curr Opin Neurol 21:111–116

    Article  PubMed  Google Scholar 

  4. Tokumaru AM, Kamakura K, Maki T, Murayama S, Sakata I, Kaji T et al (2003) Magnetic resonance imaging findings of Machado–Joseph disease: histopathologic correlation. J Comput Assist Tomogr 27:241–248

    Article  PubMed  Google Scholar 

  5. Murata Y, Yamaguchi S, Kawakami H, Imon Y, Maruyama H, Sakai T et al (1998) Characteristic magnetic resonance imaging findings in Machado–Joseph disease. Arch Neurol 55:33–37

    Article  PubMed  CAS  Google Scholar 

  6. D’Abreu A, Franca MC Jr, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F (2012) Neocortical atrophy in Machado–Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 22:285–291

    Article  PubMed  Google Scholar 

  7. D’Abreu A, Franca M Jr, Appenzeller S, Lopes-Cendes I, Cendes F (2009) Axonal dysfunction in the deep white matter in Machado–Joseph disease. J Neuroimaging 19:9–12

    Article  PubMed  Google Scholar 

  8. Radvany J, Camargo CH, Costa ZM, Fonseca NC, Nascimento ED (1993) Machado–Joseph disease of Azorean ancestry in Brazil: the Catarina kindred. Neurological, neuroimaging, psychiatric and neuropsychological findings in the largest known family, the “Catarina” kindred. Arq Neuropsiquiatr 51:21–30

    Article  PubMed  CAS  Google Scholar 

  9. Maruff P, Tyler P, Burt T, Currie B, Burns C, Currie J (1996) Cognitive deficits in Machado–Joseph disease. Ann Neurol 40:421–427

    Article  PubMed  CAS  Google Scholar 

  10. Zawacki TM, Grace J, Friedman JH, Sudarsky L (2002) Executive and emotional dysfunction in Machado–Joseph disease. Mov Disord 17:1004–1010

    Article  PubMed  Google Scholar 

  11. Burk K, Globas C, Bosch S, Klockgether T, Zuhlke C, Daum I et al (2003) Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol 250:207–211

    Article  PubMed  CAS  Google Scholar 

  12. Kawai Y, Takeda A, Abe Y, Washimi Y, Tanaka F, Sobue G (2004) Cognitive impairments in Machado–Joseph disease. Arch Neurol 61:1757–1760

    Article  PubMed  Google Scholar 

  13. Garrard P, Martin NH, Giunti P, Cipolotti L (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol 255:398–405

    Article  PubMed  CAS  Google Scholar 

  14. Klinke I, Minnerop M, Schmitz-Hubsch T, Hendriks M, Klockgether T, Wullner U et al (2010) Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum 9:433–442

    Article  PubMed  Google Scholar 

  15. Braga-Neto P, Dutra LA, Pedroso JL, Felicio AC, Alessi H, Santos-Galduroz RF et al (2012) Cognitive deficits in Machado–Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum 11:1037–1044

    Article  PubMed  Google Scholar 

  16. Braga-Neto P, Pedroso JL, Alessi H, Dutra LA, Felicio AC, Minett T et al (2012) Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum 11:549–556

    Article  PubMed  Google Scholar 

  17. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OG (2010) Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr 68:228–230

    Article  PubMed  Google Scholar 

  18. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44:2308–2314

    Article  PubMed  CAS  Google Scholar 

  19. Malloy-Diniz LF, Lasmar VA, Gazinelli Lde S, Fuentes D, Salgado JV (2007) The Rey auditory-verbal learning test: applicability for the Brazilian elderly population. Rev Bras Psiquiatr 29:324–329

    Article  PubMed  Google Scholar 

  20. Raven JC (2003) Teste das Matrizes Progressivas—Escala Geral (Séries A, B, C, D e E). CEPA, Rio de Janeiro

    Google Scholar 

  21. Lezak MD (1995) Neuropsychological assessment. Oxford University Press, Oxford

    Google Scholar 

  22. Nascimento E (2004) Escala de Inteligência Wechsler para adultos: Adaptação e padronização de uma amostra brasileira. Casa do Psicólogo, São Paulo

    Google Scholar 

  23. Wechsler D (1987) Wechsler memory scale—revised. The Psychological Corporation, San Antonio

    Google Scholar 

  24. Santos FH, Bueno OF (2003) Validation of the Brazilian children’s test of pseudoword repetition in Portuguese speakers aged 4 to 10 years. Braz J Med Biol Res 36:1533–1547

    PubMed  CAS  Google Scholar 

  25. Kaplan EF, Weintraub S (1983) The Boston naming test. Lea & Febiger, Philadelphia

    Google Scholar 

  26. Hooper HE (1983) Hooper visual organization test (VOT). Western Psychological Services, Los Angeles

    Google Scholar 

  27. Cunha JA (2005) Teste Wisconsin de classificação de cartas. Casa do Psicólogo, São Paulo

    Google Scholar 

  28. Beck AT (1993) Beck depression inventory manual. Psychology Corporation, San Antonio

    Google Scholar 

  29. Provencher SW (2000) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  Google Scholar 

  30. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  PubMed  CAS  Google Scholar 

  31. Cavassila S, Deval S, Huegen C, Van Ormondt D, Graveron-Demilly D (2001) Cramer-Rao bounds: an evaluation tool for quantitation. NMR Biomed 14:278–283

    Article  PubMed  CAS  Google Scholar 

  32. Subramony SH, Hernandez D, Adam A, Smith-Jefferson S, Hussey J, Guinm-Hardy K (2002) Ethnic differences in the expression of neurodegenerative disease: Machado–Joseph disease in Africans and Caucasians. Mov Disord 17:1068–1071

    Article  PubMed  CAS  Google Scholar 

  33. Coutinho P (1994) História da doença de Machado-Joseph. Doença de Machado-Joseph: estudo clínico, patológico e epidemiológico de uma doença neurológica de origem portuguesa. Bial, Porto: Bial

  34. Sudarsky L, Coutinho P (1995) Machado–Joseph disease. Clin Neurosci 3:17–22

    PubMed  CAS  Google Scholar 

  35. Stoodley CJ, Schmahmann JD (2010) Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 46:831–844

    Article  PubMed  Google Scholar 

  36. Kravitz DJ, Saleem KS, Baker CI, Mishkin M (2011) A new neural framework for visuospatial processing. Nat Rev Neurosci 12:217–230

    Article  PubMed  CAS  Google Scholar 

  37. Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    Article  PubMed  Google Scholar 

  38. Birn RM, Kenworthy L, Case L, Caravella R, Jones TB, Bandettini PA et al (2010) Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 49:1099–2107

    Article  PubMed  Google Scholar 

  39. Taniwaki T, Sakai T, Kobayashi T, Kuwabara Y, Otsuka M, Ichiya Y et al (1997) Positron emission tomography (PET) in Machado–Joseph disease. J Neurol Sci 145:63–67

    Article  PubMed  CAS  Google Scholar 

  40. Oz G, Hutter D, Tkac I, Clark HB, Gross MD, Jiang H et al (2010) Neurochemical alterations in spinocerebellar ataxia type 1 and their correlations with clinical status. Mov Disord 25:1253–1261

    Article  PubMed  Google Scholar 

  41. Ernst T, Jiang CS, Nakama H, Buchthal S, Chang L (2010) Lower brain glutamate is associated with cognitive deficits in HIV patients: a new mechanism for HIV-associated neurocognitive disorder. J Magn Reson Imaging 32:1045–1053

    Article  PubMed  Google Scholar 

  42. Kantarci K, Lowe V, Przybelski SA, Senjem ML, Weigand SD, Ivnik RJ et al (2011) Magnetic resonance spectroscopy, beta-amyloid load, and cognition in a population-based sample of cognitively normal older adults. Neurology 77:951–958

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação de Amparo à Pesquisa de São Paulo (FAPESP) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), Brazil. We would like to thank the patients and the healthier volunteers for participating in this study.

Conflicts of interest

None.

Ethical standard

This study was approved by the ethics committee of the Faculty of Medical Sciences of the State University of Campinas (FCM-UNICAMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Cendes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

415_2013_6998_MOESM1_ESM.tif

Supplementary material 1 Statistical maps of positive correlation between gray matter and the cognitive findings; a gray matter (GM) areas correlated with Rey Auditory Verbal Learning Test (RAVLT)-coding; b GM areas correlated with RAVLT-delayed recall; c GM areas correlated with RAVLT-recognition; d GM areas correlated with Raven′s progressive matrices; e GM correlated with Corsi block tapping task; f GM correlated with Digits span- forward; g GM correlated with semantic verbal fluency. (TIFF 527 kb)

415_2013_6998_MOESM2_ESM.tif

Supplementary material 2 Positive correlations areas between the cognitive findings and gray matter areas; a gray matter (GM) areas correlated with Rey Auditory Verbal Learning Test (RAVLT)-coding; b GM areas correlated with RAVLT-delayed recall; c GM areas correlated with RAVLT-recognition; d GM areas correlated with Raven′s progressive matrices; e GM correlated with Corsi block tapping task; f GM correlated with Digits span-forward; g GM correlated with semantic verbal fluency. Color bars represent the t value. (TIFF 342 kb)

415_2013_6998_MOESM3_ESM.tif

Supplementary material 3 Sample spectra from a a SCA3 patient and b a control. Observe the N-Acetylaspartate (NAA) peak at 2.0 PPM. (TIFF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopes, T.M., D′Abreu, A., Junior, M.C.F. et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol 260, 2370–2379 (2013). https://doi.org/10.1007/s00415-013-6998-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-013-6998-8

Keywords

Navigation