Skip to main content

Advertisement

Log in

Serum epidermal growth factor predicts cognitive functions in early, drug-naive Parkinson’s disease patients

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Epidermal growth factor (EGF) has been proposed as a candidate biomarker for cognitive impairment in Parkinson’s disease (PD). We aimed to assess the relationship between serum EGF and cognitive functions in early, drug-naive PD patients and evaluate the predictive value of EGF on cognitive functions in a 2-year follow-up study. Serum EGF was measured in 65 early, drug-naive PD patients, that underwent a comprehensive neuropsychological battery. Motor symptoms were assessed by means of the Unified Parkinson’s Disease Rating Scale, Part III (UPDRS-III). Neuropsychological evaluation was repeated after 2 years. Spearman’s rank correlation was used to assess the relationship between serum EGF levels and neuropsychological variables. Linear regression analysis was used to evaluate the relationship between EGF and neuropsychological scores as well as other variables (age, gender, UPDRS-III, levodopa equivalent dose, and type of treatment at follow-up) potentially affecting cognitive performance. Variation over time in cognitive scores was analyzed using repeated-measures ANOVA. At baseline, EGF was the only significant variable associated with performance on semantic fluency (R 2 = 0.131; p = 0.005). EGF levels (p = 0.025), together with UPDRS-III (p = 0.009) and age (p = 0.011), were associated with performance on frontal assessment battery (R 2 = 0.260). At 2-year follow-up, EGF was the only significant variable to predict performance on semantic fluency (R 2 = 0.147; p = 0.025) and color naming task of Stroop color-word test (R 2 = 0.121; p = 0.044). Serum EGF levels are related to frontal and temporal cognitive functions in early, drug-naive PD patients and predict performance on frontal and posterior cognitive functions at 2-year follow-up. EGF is proposed as a potential serum biomarker for early cognitive impairment in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muslimovic D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65:1239–1245

    Article  PubMed  Google Scholar 

  2. Aarsland D, Bronnick K, Fladby T (2011) Mild cognitive impairment in Parkinson’s disease. Curr Opin Neurol Neurosci Rep 11:371–378

    Article  Google Scholar 

  3. Aarsland D, Andersen K, Larsen JP et al (2001) Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56:730–736

    Article  PubMed  CAS  Google Scholar 

  4. Williams-Gray CH, Evans JR, Goris A et al (2009) The distinct cognitive syndromes of Parkinson’s disease: 5-year follow-up of the CamPaIGN cohort. Brain 132:2958–2969

    Article  PubMed  Google Scholar 

  5. Klepac N, Trkulja V, Realja M, Babic T (2008) Is quality of life in non-demented Parkinson’s disease patients related to cognitive performance? A clinic-based cross-sectional study. Eur J Neurol 15:128–133

    Article  PubMed  CAS  Google Scholar 

  6. Iwakura Y, Piao Y, Mizuno M et al (2005) Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson’s disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem 93:974–983

    Article  PubMed  CAS  Google Scholar 

  7. Ventrella LL (1993) Effect of intracerebroventricular infusion of epidermal growth factor in rats’ hemitransected in the nigro-striatal pathway. J Neurosurg Sci 37:1–8

    PubMed  CAS  Google Scholar 

  8. Pezzoli G, Zecchinelli A, Ricciardi S et al (1991) Intraventricular infusion of epidermal growth factor restores dopaminergic pathway in hemiparkinsonian rats. Mov Disord 6:281–287

    Article  PubMed  CAS  Google Scholar 

  9. O’Keeffe GC, Tyers P, Aarsland D et al (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci USA 106:8754–8759

    Article  PubMed  Google Scholar 

  10. Raineteau O, Rietschin L, Gradwohl G et al (2004) Neurogenesis in hippocampal slice cultures. Mol Cell Neurosci 26:241–250

    Article  PubMed  CAS  Google Scholar 

  11. Collombet JM, Beracochea D, Liscia P et al (2011) Long-term effects of cytokine treatment on cognitive behavioural recovery and neuronal regeneration in soman-poisoned mice. Behav Brain Res 221:261–270

    Article  PubMed  CAS  Google Scholar 

  12. Siddiqui A, Fang M, Ni B, Daoyuan L, Martin B, Maudsley S (2012) Central role of the EGF receptor in neurometabolic aging. Int J Endocrinol [Epub 2012 Jun 17]

  13. Oyagi A, Moriguchi S, Nitta A et al (2011) Heparin-binding EGF-like growth factor is required for synaptic plasticity and memory formation. Brain Res 1419:97–104

    Article  PubMed  CAS  Google Scholar 

  14. Sibilia M, Steinbach JP, Aguzzi A, Stingl L, Wagner EF (1998) A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor. EMBO J 17:719–731

    Article  PubMed  CAS  Google Scholar 

  15. Wagner B, Natarajan S, Grunaug S, Kroismayr R, Wagner EF, Sibilia M (2006) Neuronal survival depends on EGFR signalling in cortical but not midbrain astrocytes. EMBO J 25:752–762

    Article  PubMed  CAS  Google Scholar 

  16. Chen-Plotkin AS, Hu WT, Siderowf A et al (2011) Plasma epidermal growth factor levels predict cognitive decline in Parkinson disease. Ann Neurol 69:655–663

    Article  PubMed  CAS  Google Scholar 

  17. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinic-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  PubMed  CAS  Google Scholar 

  18. Emre M, Aarsland D, Brown R et al (2007) Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord 22:1689–1707

    Article  PubMed  Google Scholar 

  19. Tomlinson CL, Stowe R, Patel S et al (2010) Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord 25:2649–2653

    Article  PubMed  Google Scholar 

  20. Bjorkqvist M, Ohlsson M, Minthon L, Hansson O (2012) Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer’s disease. PLoS One 7:e29868

    Article  PubMed  Google Scholar 

  21. Marksteiner J, Kemmler G, Weiss EM et al (2011) Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32:539–540

    Article  PubMed  CAS  Google Scholar 

  22. Henry JD, Crawford JR (2004) A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18:284–295

    Article  PubMed  Google Scholar 

  23. Costafreda SG, Fu CH, Lee L et al (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27:799–810

    Article  PubMed  Google Scholar 

  24. Banaschewski T, Ruppert S, Tannock R et al (2006) Colour perception in ADHD. J Child Psychol Psychiatry 47:568–572

    Article  PubMed  Google Scholar 

  25. Simmons WK, Ramjee V, Beauchamp MS et al (2007) A common neural substrate for perceiving and knowing about color. Neuropsychologia 45:2802–2810

    Article  PubMed  Google Scholar 

  26. Slack BE, Breu J, Muchnicki L, Wurtman RJ (1997) Rapid stimulation of amyloid precursor protein by epidermal growth factor: role of protein kinase C. Biochem J 327:245–249

    PubMed  CAS  Google Scholar 

  27. Werner MH, Nanney LB, Stoscheck CM, King LE (1988) Localization of immunoreactive epidermal growth factor receptors in human nervous system. J Histochem Cytochem 36:81–86

    Article  PubMed  CAS  Google Scholar 

  28. Wiedermann CJ, Jelesof NJ, Pert CB, Braunsteiner H (1988) Neuromodulation by polypeptide growth factors: preliminary results on the distribution of epidermal growth factor receptors in adult brain. Wien Klin Wochenschr 100:760–763

    PubMed  CAS  Google Scholar 

  29. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a frontal assessment battery at bedside. Neurology 55:1621–1626

    Article  PubMed  CAS  Google Scholar 

  30. Carlesimo GA, Caltagirone C, Gainotti G (1996) The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. Eur Neurol 36:378–384

    Article  PubMed  CAS  Google Scholar 

  31. Caffarra P, Vezzadini G, Dieci F et al (2002) Rey-Osterrieth complex figure: normative values in an Italian population sample. Neurol Sci 22:443–447

    Article  PubMed  CAS  Google Scholar 

  32. Barbarotto R, Laiacona M, Frosio R et al (1998) A normative study on visual reaction times and two Stroop colour word tests. Ital J Neurol Sci 19:161–170

    Article  PubMed  CAS  Google Scholar 

  33. Spinniler H, Tognoni G (1987) Standardizzazione e taratura italiana di una batteria di test neuropsicologici. Ital J Neurol Sci Suppl 6

  34. Giovagnoli AR, Del Pesce M, Mascheroni S, Simoncelli M, Laiacona M, Capitani E (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309

    Article  PubMed  CAS  Google Scholar 

  35. Mondini S, Mapelli D, Vestri A, Bisiacchi P (2003) L’Esame Neuropsicologico Breve. Raffaello Cortina Editore, Milano

    Google Scholar 

  36. Benton AL, Varney NR, Hamsher KD (1978) Visuospatial judgment: a clinical test. Arch Neurol 35:364–367

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical standards

All human studies must state that they have been approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Barone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellecchia, M.T., Santangelo, G., Picillo, M. et al. Serum epidermal growth factor predicts cognitive functions in early, drug-naive Parkinson’s disease patients. J Neurol 260, 438–444 (2013). https://doi.org/10.1007/s00415-012-6648-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6648-6

Keywords

Navigation