Skip to main content

Advertisement

Log in

Targeted immunotherapy trials for idiopathic inflammatory myopathies

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

The idiopathic inflammatory myopathies (IIM) are a group of muscle diseases with complex immunopathogenesis that varies between disease subgroups, and possibly between patients within the same subgroup. There exists no universal consensus on optimum management, so that no “standard” therapy has been developed. Treatment-refractive IIM remains a clinical challenge. Progress in the development and application of molecular biology techniques and biological therapeutics are evolving into a new scientific frontier in the management of autoimmune diseases. This review offers an update on those components of the humoral and cellular immunity deemed potential targets for biological therapeutics (monoclonal antibodies and fusion proteins) that have been approved by the US FDA for treatment of immunological disorders. A futuristic approach is envisioned in which each individual will receive targeted therapy tailored to patient-specific immune mechanisms. Risk–benefit and cost analyses should determine whether such targeted therapy is appropriate and feasible for refractive and/or newly diagnosed disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Greenberg SA (2007) Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology 69:2008–2019

    Article  PubMed  Google Scholar 

  2. Dalakas MC (2010) Immunotherapy of myositis: issues, concerns and future prospects. Nat Rev Rheumatol 6:129–137

    Article  PubMed  Google Scholar 

  3. Weihl CC, Pestronk A (2010) Sporadic inclusion body myositis: possible pathogenesis inferred fro biomarkers. Curr Opin Neurol 23:482–484

    Article  PubMed  CAS  Google Scholar 

  4. Gherardi RK (2011) Pathogenic aspects of dermatomyositis, polymyositis and overlap myositis. Presse Med 40:e209–e218

    Article  PubMed  Google Scholar 

  5. Zong M, Lundberg IE (2011) Pathogenesis, classification and treatment of inflammatory myopathies. Nat Rev Rheumatol 7:297–306

    Article  PubMed  CAS  Google Scholar 

  6. Oddis CV, Rider LG, Reed AM, Ruperto N, Brunner HI, Koneru B, Feldman BM, Giannini EH, Miller FW, International myositis assessment and clinical studies group (2005) International consensus for the trials of therapies in the idiopathic inflammatory myopathies. Arthritis Rheum 52:2607–2615

    Article  PubMed  Google Scholar 

  7. Marie I, Mouthon L (2011) Therapy of polymyositis and dermatomyositis. Autoimmun Rev 11:6–13

    Article  PubMed  CAS  Google Scholar 

  8. Dalakas MC (2011) Immunotherapy of inflammatory myopathies: practical approach ad future prospects. Curr Treat Options Neurol 13:311–323

    Article  PubMed  Google Scholar 

  9. Dalakas MC, Illa I, Dambrosia JM, Soueidan SA, Stein DP, Otero C, Dinsmore ST, McCrosky S (1993) A controlled trial of high-dose intravenous immunoglobulin infusions as treatment for dermatomyositis. N Engl J Med 329:1993–2000

    Article  PubMed  CAS  Google Scholar 

  10. Chérin P (2008) Current therapy for polymyositis and dermatomyositis. Rev Méd Interne 29:9–14

    PubMed  Google Scholar 

  11. Hughes RAC, Dalakas MC, Cornblath DR, Latov N, Weksler ME, Relkin N (2009) Clinical applications of intravenous immunoglobulin fin neurology. Clin Exp Immunol 158(Suppl):34–42

    Article  PubMed  CAS  Google Scholar 

  12. Dalakas MC, Sonies B, Dambrosia J, Sekul E, Cupler E, Sivakumar K (1997) Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 48:712–716

    Article  PubMed  CAS  Google Scholar 

  13. Walter MC, Lochmüller H, Toepfer M, Schlotter B, Reilich P, Schroder M, Müller-Felber W, Pongratz D (2000) High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J Neurol 247:22–28

    Article  PubMed  CAS  Google Scholar 

  14. Bach JF (2006) Therapeutic monoclonal antibodies. Ann Pharm Fr 64:308–311

    Article  PubMed  CAS  Google Scholar 

  15. Reichert JM (2011) Antibody-based therapeutics to watch in 2011. MAbs 3:76–99

    Article  PubMed  Google Scholar 

  16. Brandåo M, Marinho A (2011) Idiopathic inflammatory myopathies: definition and management of refractory disease. Autoimmun Rev 10:720–724

    Article  PubMed  Google Scholar 

  17. Dalakas MC (2011) Inflammaory myopathies: management of steroid resistance. Curr Opin Neurol 24:457–462

    Article  PubMed  CAS  Google Scholar 

  18. Hengstman GJ, van den Hoogen FH, van Engelen BG (2009) Treatment of the inflammatory myopathies: update and practical recommendations. Expert Opin Pharmacother 10:1183–1190

    Article  PubMed  CAS  Google Scholar 

  19. Chatenoud L (2009) Progress towards the clinical use of CD3 monoclonal antibodies in the treatment of autoimmunity. Curr Opin Organ Transplant 14:351–356

    Article  PubMed  Google Scholar 

  20. Black N (1996) Why we need observational studies to evaluate the effectiveness of health care. Brit Med J 312:1215–1218

    Article  PubMed  CAS  Google Scholar 

  21. Jager KJ, Stel VS, Wanner C, Zoccali C, Dekker FW (2007) The valuable contribution of observational studies to nephrology. Kidney Int 72:671–675

    Article  PubMed  CAS  Google Scholar 

  22. McKee M, Britton A, Black N, McPherson K, Sanderson C, Bain C (1999) Interpreting the evidence: choosing between randomised and non-randomised studies. Brit Med J 319:312–315

    Article  PubMed  CAS  Google Scholar 

  23. Vandenbrouke JP (2004) When are observational studies as credible as randomised trials? Lancet 363:1728–1731

    Article  Google Scholar 

  24. Kunz R, Oxman AD (1998) The unpredictability paradox: review of empirical comparisons of randomised and non-randomised clinical trials. Brit Med J 317:1185–1190

    Article  PubMed  CAS  Google Scholar 

  25. MacLehose RR, Reeves BC, Harvey IM, Sheldon TA, Russell IT, Black AM (2000) A systematic review of comparisons of effect sizes derived from randomised and non-randomised studies. Health Technol Assess 4:1–154

    PubMed  CAS  Google Scholar 

  26. Noordzij M, Deker FW, Zoccali C, Jager KJ (2009) Study designs in clinical research. Nephron Clin Pract 113:c218–c221

    Article  PubMed  Google Scholar 

  27. Goetz FW, Planas JV, Mackenzie S (2004) Tumor necrosis factors. Dev Comp Immunol 28:287–297

    Article  CAS  Google Scholar 

  28. MacEwan DJ (2002) TNF receptor subtype signaling: differences and cellular consequences. Cell Signal 14:477–492

    Article  PubMed  CAS  Google Scholar 

  29. Slowik MR, De Luca LG, Fiers W, Pober JS (1993) Tumor necrosis factor activates human endothelial cells through the p55 tumor necrosis receptor but the p75 receptor contributes to activation at low tumor necrosis factor concentration. Am J Pathol 143:1724–1730

    PubMed  CAS  Google Scholar 

  30. Shimizu T, Tomita Y, Son K, Nishinarita S, Sawada S, Horie T (2000) Elevation of serum soluble tumor necrosis factor receptors in patients with polymyositis and dermatomyositis. Clin Rheumatol 19:352–359

    Article  PubMed  CAS  Google Scholar 

  31. Kuru S, Inukai A, Liang Y, Doyu M, Takano A, Sobue G (2000) Tumor necrosis factor-alpha expression in muscles of polymyositis and dermatomyositis. Acta Neuropathol 99:585–588

    Article  PubMed  CAS  Google Scholar 

  32. Kuru S, Inukai A, Kato T, Liang Y, Kimura S, Sobue G (2003) Expression of tumor necrosis factor-alpha in regenerating muscle fibers in inflammatory and non-inflammatory myopathies. Acta Neuropathol (Berlin) 105:217–224

    CAS  Google Scholar 

  33. De Bleecker JL, Meire VI, Declerq W, Van Aken EH (1999) Immunolocalization of tumor necrosis factor-alpha and its receptors in inflammatory myopathies. Neuromuscul Disord 9:239–246

    Article  PubMed  Google Scholar 

  34. Peterson JM, Feeback KD, Baas JH, Pizza FX (2006) Tumor necrosis factor-alpha promotes the accumulation of neutrophils and macrophages in skeletal muscle. J Appl Physiol 101:1394–1399

    Article  PubMed  CAS  Google Scholar 

  35. Schmidt J, Barthel K, Wrede A, Salajegheh M, Bahr M, Dalakas MC (2008) Interrelation of inflammation and APP in sIBM: IL-1β induces accumulation of β-amyloid in skeletal muscle. Brain 131:1228–1240

    Article  PubMed  Google Scholar 

  36. Tracey KJ, Lowry SF, Beutler B, Cerami A, Albert JD, Shires GT (1986) Cachectin/tumor necrosis factor mediates changes of skeletal muscle plasma membrane potential. J Exp Med 164:1368–1373

    Article  PubMed  CAS  Google Scholar 

  37. Lee MD, Zentella A, Vine W, Pekala PH, Cerami A (1987) Effect of endotoxin-induced monokines on glucose metabolism in the muscle cell line L6. Proc Natl Acad Sci USA 84:2590–2594

    Article  PubMed  CAS  Google Scholar 

  38. Flores EA, Bistrian BR, Pomposelli JJ, Dinarello CA, Blackburn GL, Istfan NW (1989) Infusion of tumor necrosis factor/cachectin promotes muscle catabolism in the rat. A synergistic effect with interleukin 1. J Clin Invest 83:1614–1622

    Article  PubMed  CAS  Google Scholar 

  39. Garcia-Martinez C, Agell N, Llovera M, Lopez-Soriano FJ, Argiles JM (1993) Tumor necrosis factor-alpha increases the ubiquitinization of rat skeletal muscle proteins. FEBS Lett 323:211–214

    Article  PubMed  CAS  Google Scholar 

  40. Reid MB, Li YP (2001) Tumor necrosis factor-alpha and muscle wasting: a cellular perspective. Respir Res 2:269–271

    Article  PubMed  CAS  Google Scholar 

  41. Reid MB, Lannergren J, Westerblad H (2002) Respiratory and limb muscle weakness induced by tumor necrosis factor alpha: involvement of muscle myofilaments. Am J Respir Crit Care Med 166:479–484

    Article  PubMed  Google Scholar 

  42. Stübgen JP (2011) Tumor necrosis factor-alpha as a potential therapeutic target in idiopathic inflammatory myopathies. J Neurol 258:961–970

    Article  PubMed  CAS  Google Scholar 

  43. Barohn RJ, Herbelin L, Kissel JT, King W, McVey AL, Saperstein DS, Mendell JR (2006) Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 66(Suppl 1):S123–S124

    Article  PubMed  CAS  Google Scholar 

  44. Efthimiou P, Schwartzman S, Kagen LJ (2006) Possible role for tumour necrosis factor inhibitors in the treatment of resistant dermatomyositis and polymyositis: a retrospective study of 8 patients. Ann Rheum Dis 65:1233–1236

    Article  PubMed  CAS  Google Scholar 

  45. Iannone F, Scioscia C, Falappone PC, Covelli M, Lapadula G (2006) Use of etanercept in the treatment of dermatomyositis: a case series. J Rheumatol 33:1802–1804

    PubMed  CAS  Google Scholar 

  46. Riley P, McCann LJ, Maillard SM, Woo P, Murray KJ, Pilkington CA (2008) Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology 47:877–880

    Article  PubMed  CAS  Google Scholar 

  47. Dastmalchi M, Grundtman C, Alexanderson H, Mavragani CP, Einarsdottir H, Helmers SB, Elvin K, Crow MK, Nennesmo I, Lundberg IE (2008) A high incidence of disease flares in an open pilot study of infliximab in patients with refractory inflammatory myopathies. Ann Rheum Dis 67:1670–1677

    Article  PubMed  CAS  Google Scholar 

  48. Hengstman GJ, de Bleecker JL, Feist E, Vissing J, Denton CP, Manoussakis MN, Slott Jensen H, van Engelen BG, van den Hoogen FH (2008) Open-label trial of anti-TNF-α in dermatomyositis and polymyositis treated concomitantly with methotrexate. Eur Neurol 59:159–163

    Article  PubMed  CAS  Google Scholar 

  49. Coyle K, Pokrovnichka A, French K, Joe G, Shrader J, Swan L, Cabalar I, Harris-Love M, Plotz P, Miller F, Gourley M (2008) A randomized, double-blind, placebo-controlled trail of infliximab in patients with polymyositis and dermatomyositis. Arthritis Rheum 58(Suppl):S923–S924

    Google Scholar 

  50. The muscle study group (2011) A randomized, pilot trial of etanercept in dermatomyositis. Ann Neurol 70:427–436

    Article  CAS  Google Scholar 

  51. Tyring SK (1995) Interferons: biochemistry and mechanisms of action. Am J Obstet Gynecol 172:1350–1353

    Article  PubMed  CAS  Google Scholar 

  52. Greenberg SA, Sanoudou D, Haslett JN, Kohane IS, Kunkel LM, Beggs AH, Amato AA (2002) Molecular profiles of inflammatory myopathies. Neurology 59:1170–1182

    Article  PubMed  CAS  Google Scholar 

  53. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type I interferon-producing cells in human blood. Science 284:1835–1837

    Article  PubMed  CAS  Google Scholar 

  54. Feldman D, Goldstein AL, Cox DC, Grimley PM (1988) Cultured human endothelial cells treated with recombinant leukocyte A interferon. Tubuloreticular inclusion formation, antiproliferative effect, and 2′,5′ oligoadenylate synthetase induction. Lab Invest 58:584–589

    PubMed  CAS  Google Scholar 

  55. Greenberg SA, Pinkus JL, Pinkus GS, Burleson T, Sanoudou D, Tawil R, Barohn RJ, Saperstein DS, Briemberg HR, Ericsson M, Park P, Amato AA (2005) Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 57:664–678

    Article  PubMed  CAS  Google Scholar 

  56. Gallardo E, de Andres I, Illa I (2001) Cathepsins are upregulated by IFN-gamma/STAT1 in human muscle culture: a possible active factor in dermatomyositis. J Neuropathol Exp Neurol 60:847–855

    PubMed  CAS  Google Scholar 

  57. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N (2005) Activation of endoplasmic reticulum stress response in autoimmune myositis: a potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52:1824–1835

    Article  PubMed  CAS  Google Scholar 

  58. Pedrol E, Grau JM, Casademont J, Cid MC, Masanés F, Fernandez-Sola J, Urbano-Mårquez A (1995) Idiopathic inflammatory myopathies. Immunohistochemical analysis of the major histocompatibility complex antigen expression, inflammatory infiltrate phenotype and activation cell markers. Clin Neuropathol 14:179–184

    PubMed  CAS  Google Scholar 

  59. Baechler EC, Bauer JW, Slattery CA, Ortmann WA, Espe KJ, Novitzke J, Ytterberg SR, Gregersen PK, Behrens TW, Reed AM (2007) An interferon signature in peripheral blood in dermatomyositis patients is associated with disease activity. Mol Med 13:59–68

    Article  PubMed  CAS  Google Scholar 

  60. Bilgic H, Ytterberg SR, Amin S, McNallan KT, Wilson JC, Koeuth T, Ellingson S, Newman B, Bauer JW, Peterson EJ, Baechler EC, Reed AM (2009) Interleukin-6 and type I interferon-regulated genes and chemokines mark disease activity in dermatomyositis. Arthritis Rheum 60:3436–3446

    Article  PubMed  CAS  Google Scholar 

  61. Greenberg SA (2010) Dermatomyositis and type I interferons. Curr Rheumatol Rep 12:198–203

    Article  PubMed  CAS  Google Scholar 

  62. Yao Y, Higgs BW, Richman L, White B, Jallal B (2010) Use of type I interferon-inducible mRNAs as pharmacodynamic markers and potential diagnostic markers in trials with sifalimumab, an anti-IFN alpha antibody, in systemic lupus erythematosus. Arthritis Res Ther 12(Suppl 1):S6

    Article  PubMed  CAS  Google Scholar 

  63. Merrill JT, Wallace DJ, Petri M, Kirou KA, Yao Y, White WI, Robbie G, Levin R, Berney SM, Chindalore V, Olsen N, Richman L, Le C, White B, Lupus interferon skin activity (LISA) study investigators (2011) Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase 1, multicentre, double-blind randomised study. Ann Rheum Dis 70:1905–1911

    Article  PubMed  CAS  Google Scholar 

  64. Lundberg I, Ulfgren AK, Nyberg P, Andersson U, Klareskog L (1997) Cytokine production in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Rheum 40:865–874

    Article  PubMed  CAS  Google Scholar 

  65. Grundtman C, Salomonsson S, Dorph C, Bruton J, Andersson U, Lundberg IE (2007) Immunolocalization of interleukin-1 receptors in the sarcolemma and nuclei of skeletal muscle in patients with idiopathic inflammatory myopathies. Arthritis Rheum 56:674–687

    Article  PubMed  Google Scholar 

  66. De Paepe B, Creus KK, De Bleecker JL (2009) Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr Opin Rheumatol 21:610–616

    Article  PubMed  CAS  Google Scholar 

  67. Lundberg I, Kratz AK, Alexanderson H, Patarroyo M (2000) Decreased expression of interleukin-1 alpha, interleukin-1 beta and cell adhesion molecules in muscle tissue following corticoid treatment in patients with polymyositis and dermatomyositis. Arthritis Rheum 43:336–348

    Article  PubMed  CAS  Google Scholar 

  68. Englund P, Nennesmo I, Klareskog L, Lundberg IE (2002) Interleukin-1 alpha expression in capillaries and major histocompatibility complex class 1 expression in type II muscle fibers from polymyositis and dermatomyositis patients: important pathogenic features independent of inflammatory cell clusters in muscle tissue. Arthritis Rheum 46:1044–1055

    Article  PubMed  CAS  Google Scholar 

  69. Baird GS, Montine TJ (2008) Multiple immunoassay analysis of cytokines in idiopathic inflammatory myopathy. Arch Pathol Lab Med 132:232–238

    PubMed  CAS  Google Scholar 

  70. Fan J, Wojnar MM, Theodorakis M, Lang CH (1996) Regulation of insulin-like growth factor (IGF)-1 mRNA and peptide and IGF-binding proteins by interleukin-1. Am J Physiol 270:R621–R629

    PubMed  CAS  Google Scholar 

  71. Frost RA, Lang CH (2004) Alteration of somatic function by proinflammatory cytokines. J Anim Sci 82(E Suppl):E100–E109

    PubMed  Google Scholar 

  72. Dalakas MC (2008) Molecular links between inflammation and degeneration: lessons on “neuroinflammation” using IBM as a model. Ann Neurol 64:1–3

    Article  PubMed  Google Scholar 

  73. Grundtman C, Salomonsson S, Dorph C, Bruton J, Andersson U, Lundberg IE (2005) Marked expression of IL-1 receptors in cell nuclei and muscle fiber membrane in muscle tissue of patients with idiopathic inflammatory myopathies. Arthritis Res Ther 7(Suppl):S33

    Article  Google Scholar 

  74. Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55

    Article  PubMed  CAS  Google Scholar 

  75. Gabay C, Gay-Croisier F, Roux-Lombard P, Meyer O, Maineti C, Guerne PA, Vischer T, Dayer JM (1994) Elevated serum levels of interleukin-1 receptor antagonist in polymyositis-dermatomyositis. A biologic marker of disease activity with a possible role in the lack of acute-phase response. Arthritis Rheum 37:1744–1751

    Article  PubMed  CAS  Google Scholar 

  76. Prieur AM, Drayer A, Roux-Lombard P, Dayer JM (1997) Levels of cytokine inhibitors: a possible marker of disease activity in childhood dermatomyositis and polymyositis. Clin Exp Rheumatol 15:211–214

    PubMed  CAS  Google Scholar 

  77. Son K, Tomita Y, Shimizu T, Nishinarita S, Sawada S, Horie T (2000) Abnormal IL-1 antagonist production in patients with polymyositis and dermatomyositis. Intern Med 39:128–135

    Article  PubMed  CAS  Google Scholar 

  78. Dorph C, Dastmalchi M, Alexanderson H, Ottosson C, Lindroos E, Nennesmo I, Lundberg IE (2009) Anakinra in patients with refractory idiopathic inflammatory myopathies. Arthritis Rheum 60(Suppl 10):589

    Google Scholar 

  79. Zong M, Malmstrøm V, Lundberg IE (2011) Anakinra effects on T cells in patients with refractory idiopathic inflammatory myopathies. Ann Rheum Dis 70(Suppl 2):A80–A81

    Article  Google Scholar 

  80. Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12:180–190

    PubMed  CAS  Google Scholar 

  81. Létourneau S, Krieg C, Pantaleo G, Boyman O (2009) IL-2 and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol 123:758–762

    Article  PubMed  CAS  Google Scholar 

  82. Rubin LA, Kurman CC, Fritz ME, Biddison WE, Boutin B, Yarchoan R, Nelson DL (1985) Soluble interleukin-2 receptors are released from activated human lymphoid cells in vitro. J Immunol 8:3172–3177

    Google Scholar 

  83. Semenzato G, Bambara LM, Biasi D, Frigo A, Vinante F, Zuppini B, Trentin L, Feruglio C, Chilosi M, Pizzolo G (1988) Increased serum levels of soluble interleukin-2 receptor in patients with systemic lupus erythematosus and rheumatoid arthritis. J Clin Immunol 8:447–452

    Article  PubMed  CAS  Google Scholar 

  84. Hartung HP, Reiners K, Schmidt B, Stoll G, Toyka KV (1991) Serum interleukin-2 concentrations in Guillain-Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy: comparison with other neurological diseases of presumed immunopathogenesis. Ann Neurol 30:48–53

    Article  PubMed  CAS  Google Scholar 

  85. Manoussakis MN, Germanidis GS, Drosos AA, Moutsopoulos HM (1992) Impaired urinary excretion of soluble IL-2 receptors in patients wit systemic lupus erythematosus and rheumatoid arthritis. Lupus 1:105–109

    Article  PubMed  CAS  Google Scholar 

  86. Wolf RE, Baethge BA (1990) Interleukin-1 alpha, interleukin-2, and soluble interleukin-2 receptors in polymyositis. Arthritis Rheum 33:1007–1014

    Article  PubMed  CAS  Google Scholar 

  87. Tokano Y, Kanai Y, Hashimoto H, Okumura K, Hirose S (1992) Soluble interleukin 2 receptors in patients with polymyositis/dermatomyositis. Ann Rheum Dis 51:781–782

    Article  PubMed  CAS  Google Scholar 

  88. Gottfried I, Seeber A, Anegg B, Rieger A, Stingl G, Volc-Platzer B (2000) High dose intravenous immunoglobulin (IVIG) in dermatomyositis: clinical responses and effect on sIL-2R levels. Eur J Dermatol 10:29–35

    PubMed  CAS  Google Scholar 

  89. Kobayashi I, Ono S, Kawamura N, Okano M, Kobayashi K (2001) Elevated serum levels of soluble interleukin-2 receptor in juvenile dermatomyositis. Pediatr Int 43:109–111

    Article  PubMed  CAS  Google Scholar 

  90. Samsonov MY, Nassonov EL, Tilz GP, Geht BM, Demel U, Gurkina GT, Shtutman VZ, Guseva AG, Wachter H, Fuchs D (1997) Elevated serum levels of neopterin in adult patients with polymyositis/dermatomyositis. Br J Rheumatol 36:656–660

    Article  PubMed  CAS  Google Scholar 

  91. Giorno R, Ringel SP (1986) Analysis of macrophages, activated cells and T cell subsets in inflammatory myopathies using monoclonal antibodies. Pathol Immunopathol Res 5:491–499

    Article  PubMed  CAS  Google Scholar 

  92. Isenberg DA, Rowe D, Shearer M, Novick D, Beverley PC (1986) Localization of interferons and interleukin 2 in polymyositis and muscular dystrophy. Clin Exp Immunol 63:450–458

    PubMed  CAS  Google Scholar 

  93. Esteva-Lorenzo FJ, Janik JE, Fenton RG, Emslie-Smith A, Engel AG, Longo DL (1995) Myositis associated with interleukin-2 therapy in a patient with metastatic renal cell carcinoma. Cancer 76:1219–1223

    Article  PubMed  CAS  Google Scholar 

  94. Finger DR, Plotz PH, Heywood G (1995) Myositis following treatment with high-dose interleukin-2 for malignancy. J Rheumatol 22:2188

    PubMed  CAS  Google Scholar 

  95. Fraenkel PG, Rutkove SB, Matheson JK, Fowkes M, Cannon ME, Patti ME, Atkins MB, Gollob JA (2002) Induction of myasthenia gravis, myositis, and insulin-dependent diabetes mellitus by high-dose interleukin-2 in a patient with renal cell cancer. J Immunother 25:373–378

    Article  PubMed  Google Scholar 

  96. Martin R (2012) Anti-CD25 (daclizumab) monoclonal antibody therapy in relapsing-remitting multiple sclerosis. Clin Immunol 142:9–14

    Article  PubMed  CAS  Google Scholar 

  97. Boggi U, Danesi R, Vistoli F, Del Chiaro M, Signori S, Marchetti P, Del Tacca M, Mosca F (2004) A risk-benefit assessment of basiliximab in renal transplantation. Drug Saf 27:91–106

    Article  PubMed  CAS  Google Scholar 

  98. Rose JW, Burns JB, Bjorklund J, Klein J, Watt HE, Carlson NG (2007) Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 69:785–789

    Article  PubMed  CAS  Google Scholar 

  99. Schippling DS, Martin R (2008) Spotlight on anti-CD25: daclizumab in MS. Int MS J 15:94–98

    PubMed  Google Scholar 

  100. Creed TJ, Norman MR, Probert CS, Harvey RF, Shaw IS, Smithson J, Anderson J, Moorghen M, Gupta J, Shepherd NA, Dayan CM, Hearing SD (2003) Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther 18:65–75

    Article  PubMed  CAS  Google Scholar 

  101. Creed TJ, Probert CS, Norman MN, Moorghen M, Shepherd NA, Hearing SD, Dayan CM, Basbuc investigators (2006) Basiliximab for the treatment of steroid-resistant ulcerative colitis: further experience in moderate and severe disease. Aliment Pharmacol Ther 23:1435–1442

    Article  PubMed  CAS  Google Scholar 

  102. Becker MO, Brückner C, Scherer HU, Wassermann N, Humrich JY, Hanitsch LG, Schneider U, Kawald A, Hanke K, Burmester GR, Riemekasten G (2011) The monoclonal anti-CD25 antibody basiliximab for the treatment of progressive systemic sclerosis: an open-label study. Ann Rheum Dis 70:1340–1341

    Article  PubMed  CAS  Google Scholar 

  103. Nussenblatt RB, Peterson JS, Foster CS, Rao NA, See RF, Letko E, Buggage RR (2005) Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional study. Ophthalmology 112:764–770

    Article  PubMed  Google Scholar 

  104. Buggage RR, Levy-Clarke G, Sen HN, Ursea R, Srivastava SK, Suhler EB, Altemare C, Velez G, Ragheb J, Chan CC, Nussenblatt RB, Bamji AT, Sran P, Waldmann T, Thompson DJ (2007) A double-masked, randomized study to investigate the safety and efficacy of daclizumab to treat the ocular complications related to Behçet’s disease. Ocul Immunol Inflamm 15:63–70

    Article  PubMed  CAS  Google Scholar 

  105. Owen CM, Harrison PV (2000) Successful treatment of severe psoriasis with basiliximab, an interleukin-2 receptor monoclonal antibody. Clin Exp Dermatol 25:195–197

    Article  PubMed  CAS  Google Scholar 

  106. Salim A, Emerson RM, Daiziel KL (2000) Successful treatment of severe generalized pustular psoriasis with basiliximab (interleukin-2 receptor blocker). Br J Dermatol 143:1121–1122

    Article  PubMed  CAS  Google Scholar 

  107. Kakoulidou M, Pirskanen-Mateli R, Lefvert AK (2008) Treatment of a patient with myasthenia gravis using antibodies against CD25. Acta Neurol Scand 117:211–216

    Article  PubMed  CAS  Google Scholar 

  108. Garcia-Pous M, Hernåndez-Garfella ML, Dîaz-Llopis M (2007) Treatment of chronic orbital myositis with daclizumab. Can J Ophthalmol 42:156–157

    PubMed  Google Scholar 

  109. Scheller J, Ohnesorge N, Rose-John S (2006) Interleukin-6-trans-signalling in chronic inflammation and cancer. Scand J Immunol 63:321–329

    Article  PubMed  CAS  Google Scholar 

  110. Rose-John S, Waetzig GH, Scheiler J, Grotzinger J, Seegert D (2007) The Il-6/sIL-6R complex as a novel target for therapeutic approaches. Expert Opin Ther Targets 11:613–624

    Article  PubMed  CAS  Google Scholar 

  111. Kallen KJ (2002) The role of transsignalling via the agonistic soluble IL-6 receptor in human disease. Biochim Biophys Acta 1592:323–343

    Article  PubMed  CAS  Google Scholar 

  112. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76

    Article  PubMed  CAS  Google Scholar 

  113. Murakami M, Nishimoto N (2011) The value of blocking IL-6 outside rheumatoid arthritis: current perspective. Curr Opin Rheumatol 23:273–277

    Article  PubMed  CAS  Google Scholar 

  114. Tanaka T, Narazaki M, Kishimoto T (2012) Therapeutic targeting of interleukin-6 receptor. Ann Rev Pharmacol Toxicol 52:199–219

    Article  CAS  Google Scholar 

  115. Lepidi H, Frances V, Figarella-Branger D, Bartoli C, Machado-Baeta A, Pellissier JF (1998) Local expression of cytokines in idiopathic inflammatory myopathies. Neuropathol Appl Neurobiol 24:73–79

    Article  PubMed  CAS  Google Scholar 

  116. Sugiura T, Kawaguchi Y, Harigai M, Takagi K, Ohta S, Fukasawa C, Hara M, Kamatani N (2000) Increased CD40 expression on muscle cells of polymyositis and dermatomyositis: role of CD40–CD40 ligand interaction in IL-6, IL-8, IL-15, and monocyte chemoattractant protein-1 production. J Immunol 164:6593–6600

    PubMed  CAS  Google Scholar 

  117. Tucci M, Quatraro C, Dammacco F, Silvestris F (2007) Increased IL-18 production by dendritic cells in active inflammatory myopathies. Ann NY Acad Sci 1107:184–192

    Article  PubMed  CAS  Google Scholar 

  118. Sugihara T, Sekine C, Nakae T, Kohyama K, Harigal M, Iwakura Y, Matsumoto Y, Miyasaka N, Kohsaka H (2007) A new murine model to define the critical pathogenic and therapeutic mediators of polymyositis. Arthritis Rheum 56:1304–1314

    Article  PubMed  CAS  Google Scholar 

  119. Okiyama N, Sugihara T, Iwakura Y, Yokozeki H, Miyasaka N, Kohsaka H (2009) Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum 60:2505–2512

    Article  PubMed  CAS  Google Scholar 

  120. Campbell L, Chen C, Bhagat SS, Parker RA, Ostor AJ (2011) Risk of adverse events including serious infections in rheumatoid arthritis patients treated with tocilizumab: a systemic literature review and meta-analysis of randomized controlled trials. Rheumatology (Oxford) 50:552–562

    Article  CAS  Google Scholar 

  121. Narazaki M, Hagihara K, Shima Y, Ogata A, Kishimoto T, Tanaka T (2011) Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology (Oxford) 50:1344–1346

    Article  Google Scholar 

  122. Emslie-Smith AM, Engel AG (1990) Microvascular changes in early and advanced dermatomyositis: a quantitative study. Ann Neurol 27:343–356

    Article  PubMed  CAS  Google Scholar 

  123. Kissel JT, Halyerman RK, Rammohan KW, Mendell JR (1991) The relationship of complement-mediated microvasculopathy to the histologic features and clinical duration of disease in dermatomyositis. Arch Neurol 48:26–30

    Article  PubMed  CAS  Google Scholar 

  124. Thomas TC, Rollins SA, Rother RP, Giannoni MA, Hartman SL, Elliott EA, Nye SH, Matis LA, Squinto SP, Evans MJ (1996) Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol Immunol 33:1389–1401

    Article  PubMed  CAS  Google Scholar 

  125. Kaplan M (2002) Eculizumab (Alexion). Curr Opin Investig Drugs 3:1017–1023

    PubMed  CAS  Google Scholar 

  126. Ricklin D, Lambris JD (2007) Complement-targeted therapeutics. Nat Biotechnol 25:1265–1275

    Article  PubMed  CAS  Google Scholar 

  127. Dalakas MC, Illa I, Gallardo E, Juarez C (1997) Inclusion body myositis and paraproteinemia: incidence and immunopathologic correlations. Ann Neurol 41:100–104

    Article  PubMed  CAS  Google Scholar 

  128. Garlepp MJ, Mastaglia FL (2008) Inclusion body myositis: new insights into pathogenesis. Curr Opin Rheumatol 20:662–668

    Article  PubMed  Google Scholar 

  129. Greenberg SA (2011) Inclusion body myositis. Curr Opin Rheumatol 23:574–578

    Article  PubMed  Google Scholar 

  130. Arahata K, Engel AG (1984) Monoclonal antibody analysis of mononuclear cells in myopathies. 1. Quantification of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann Neurol 16:193–208

    Article  PubMed  CAS  Google Scholar 

  131. Lopez de Padilla CM, Vallajo AN, Lacomis D, McNallan K, Reed AM (2009) Extra-nodal lymphoid microstructures in inflamed muscle and disease severity of new-onset juvenile dermatomyositis. Arthritis Rheum 60:1160–1172

    Article  PubMed  Google Scholar 

  132. Figarella-Branger D, Pellissier JF, Bianco N, Devictor B, Toga M (1990) Inflammatory and non-inflammatory inclusion body myositis. Characterization of the mononuclear cells and expression of the immunoglobulin class I major histocompatibility complex product. Acta Neuropathol (Berlin) 79:528–536

    Article  CAS  Google Scholar 

  133. Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B, Bregoli L, O’Connor KC, Amato AA (2005) Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65:1782–1787

    Article  PubMed  CAS  Google Scholar 

  134. De Bleecker JL, Engel AG, Butcher EC (1996) Peripheral lymphoid tissue-like adhesion molecule expression in nodular infiltrates in inflammatory myopathies. Neuromuscul Disord 6:255–260

    Article  PubMed  Google Scholar 

  135. Bradshaw EM, Orihuela A, McArdle SL, Salajegheh M, Amato AA, Hafler DA, Greenberg SA, O’Connor KC (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556

    PubMed  CAS  Google Scholar 

  136. Raju R, Dalakas MC (2005) Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes. Brain 128:1887–1896

    Article  PubMed  Google Scholar 

  137. Hengstman GJ, van Engelen BG, van Venrooij WJ (2004) Myositis specific autoantibodies: changing insights in pathophysiology and clinical associations. Curr Opin Rheumatol 16:692–699

    PubMed  Google Scholar 

  138. Gunawardena H, Betteridge ZE, McHugh NJ (2009) Myositis-specific autoantibodies: their clinical and pathogenic significance in disease expression. Rheumatology (Oxford) 48:607–612

    Article  CAS  Google Scholar 

  139. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey BK, Royston I, Davis T, Levy R (1997) IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 90:2188–2195

    PubMed  CAS  Google Scholar 

  140. Levine TD (2005) Rituximab in the treatment of dermatomyositis. An open-label pilot study. Arthritis Rheum 52:601–607

    Article  PubMed  CAS  Google Scholar 

  141. Mok CC, Ho LY, To CH (2007) Rituximab for refractory polymyositis: an open label prospective study. J Rheumatol 34:1864–1868

    PubMed  CAS  Google Scholar 

  142. Chung L, Genovese MC, Fiorentino DF (2007) A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch Dermatol 143:763–767

    Article  PubMed  CAS  Google Scholar 

  143. Sultan AM, Ng KP, Edwards JCW, Isenberg DA, Cambridge G (2008) Clinical outcome following B cell depletion therapy in eight patients with refractory idiopathic inflammatory myopathy. Clin Exp Rheumatol 26:887–893

    PubMed  CAS  Google Scholar 

  144. Sem M, Molberg O, Lund MB, Gran JT (2009) Rituximab treatment of the anti-synthetase syndrome: a retrospective case series. Rheumatology (Oxford) 48:968–971

    Article  CAS  Google Scholar 

  145. Valiyil R, Casciola-Rosen L, Hong G, Mammen A, Christopher-Stine L (2010) Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res 62:1328–1334

    Article  CAS  Google Scholar 

  146. Mahler EA, Blom M, Voermans NC, van Engelen BG, van Riel PL, Vonk MC (2011) Rituximab treatment in patients with refractory inflammatory myopathies. Rheumatology (Oxford) 50:2206–2213

    Article  CAS  Google Scholar 

  147. Bader-Meunier B, Decaluwe H, Barnerias C, Gherardi R, Quartier P, Faye A, Guigonis V, Pagnier A, Brochard K, Sibilia J, Gottenberg JE, Bodemer C (2011) Safety and efficacy of rituximab in severe juvenile dermatomyositis: results from 9 patients from the French autoimmunity and rituximab registry. J Rheumatol 38:1436–1440

    Article  PubMed  CAS  Google Scholar 

  148. Couderc M, Gottenberg JE, Mariette X, Hachulla E, Sibilia J, Fain O, Hot A, Dougados M, Euller-Ziegler L, Bourgeois P, Larroche C, Tournadre A, Amoura Z, Maziéres B, Arlet P, De Brandt M, Schaeverbeke T, Soubrier M (2011) Efficacy and safety of rituximab in the treatment of refractory inflammatory myopathies in adults: results from the AIR registry. Rheumatology 50:2283–2289

    Article  PubMed  CAS  Google Scholar 

  149. Garcîa-Hernåndez FJ, Gonzålez-Leon R, Castillo-Palma MJ, Sånchez-Romån J (2011) Rituximab is effective in the treatment of patients with idiopathic inflammatory myopathy. Clin Exp Rheumatol 29:363–364

    PubMed  Google Scholar 

  150. Garcîa Hernåndez FJ, Chinchilla Palomares E, Castillo Palma MJ, Gonzålez Pulido C, Ocaña Medina C, Sånchez Romån J (2010) Evaluation of the effectiveness of treatment with rituximab associated to cyclophosphamide in patients with resistant idiopathic inflammatory myopathy. Med Clin (Barcilona) 135:256–259

    Article  Google Scholar 

  151. Oddis CV, Reed AM, Aggarwal R, Ascherman DP, Barohn RJ, Feldman BM, Koontz DC, Miller FW, Pryber SL, Rider LG, Rockette HE, The RIM group (2010) Rituximab in the treatment of refractory adult and juvenile dermatomyositis (DM) and adult polymyositis (PM): the RIM study (abstract). Arthritis Rheum 62:3844

    Google Scholar 

  152. Rider LG, Giannini EH, Brunner HI, Ruperto N, James-Newton L, Reed AM AM, Lachenbruch PA, Miller FW, International myositis assessment and clinical studies group (2004) International consensus on preliminary definitions of improvement in adult and juvenile myositis. Arthritis Rheum 50:2281–2290

    Article  PubMed  Google Scholar 

  153. Dalakas MC, Hohlfeld R (2003) Polymyositis and dermatomyositis. Lancet 362:971–982

    Article  PubMed  CAS  Google Scholar 

  154. Schmidt J, Dalakas MC (2010) Pathomechanisms of inflammatory myopathies: recent advances and implications for diagnosis and therapy. Exp Opin 4:241–250

    CAS  Google Scholar 

  155. Orimo S, Koga R, Goto K, Nakamura K, Arai M, Tamaki M, Sugita H, Nonaka I, Arahata K (1994) Immunohistochemical analysis of perforin and granzyme A in inflammatory myopathies. Neuromuscul Disord 4:219–226

    Article  PubMed  CAS  Google Scholar 

  156. Goebels N, Michaelis D, Engelhardt M, Huber S, Bender A, Pongratz D, Johnson MA, Wekerle H, Tschopp J, Jenne D, Hohlfeld R (1996) Differential expression of perforin in muscle-infiltrating T cells in polymyositis and dermatomyositis. J Clin Invest 97:2905–2910

    Article  PubMed  CAS  Google Scholar 

  157. Ikezoe K, Ohshima S, Osoegawa M, Tanaka M, Ogawa K, Nagata K, Kira JI (2006) Expression of granulysin in polymyositis and inclusion body myositis. J Neurol Neurosurg Psychiatry 77:1187–1190

    Article  PubMed  CAS  Google Scholar 

  158. Mantegazza R, Andreetta F, Bernasconi P, Baggi F, Oksenberg JR, Simoncini O, Mora M, Cornelio F, Steinman L (1993) Analysis of T cell receptor repertoire in muscle-infiltrating T lymphocytes in polymyositis. Restricted V alpha/beta rearrangements may indicate antigen-driven selection. J Clin Invest 91:2880–2886

    Article  PubMed  CAS  Google Scholar 

  159. O’Hanlon TP, Dalakas MC, Plotz PH, Miller FW (1994) Predominant TCR-alpha beta variable and joining gene expression by muscle-infiltrating lymphocytes in the idiopathic inflammatory myopathies. J Immunol 152:2569–2576

    PubMed  Google Scholar 

  160. Bender A, Ernst N, Iglesias A, Dornmair K, Wekerle H, Hohlfeld R (1995) T cell receptor repertoire in polymyositis: clonal expansion of autoaggressive CD8+ cells. J Exp Med 181:1863–1868

    Article  PubMed  CAS  Google Scholar 

  161. Fyhr IM, Moslemi AR, Lindberg C, Oldfors A (1998) T cell receptor beta-chain repertoire in inclusion body myositis. J Neuroimmunol 91:129–134

    Article  PubMed  CAS  Google Scholar 

  162. Amemiya K, Granger RP, Dalakas MC (2000) Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123:2030–2039

    Article  PubMed  Google Scholar 

  163. Benveniste O, Herson S, Salomon B, Dimitri D, Trébeden-Négre H, Jean L, Bon-Durand V, Antonelli D, Klatzmann D, Boyer O (2004) Long-term persistence of clonally expanded T cells in patients with polymyositis. Ann Neurol 56:867–872

    Article  PubMed  CAS  Google Scholar 

  164. Chevrel G, Page G, Granet C, Streichenberger N, Varennes A, Miossec P (2003) Interleukin-17 increases the effects of IL-1β on muscle cells: arguments for the role of t cells in the pathogenesis of myositis. J Neuroimmunol 137:125–133

    Article  PubMed  CAS  Google Scholar 

  165. Banica L, Besliu A, Pistol G, Stavaru C, Ionescu R, Forsea AM, Tanaseanu C, Dumitrache S, Otelea D, Tamsulea I, Tanaseanu S, Chitonu C, Paraschiv S, Balteanu M, Stefanescu M, Matache C (2009) Quantification and molecular characterization of regulatory T cells in connective tissue diseases. Autoimmunity 42:41–49

    Article  PubMed  CAS  Google Scholar 

  166. Dalakas MC, Rakocevic G, Schmidt J, Salajegheh M, McElroy B, Harris-Love MO, Shrader JA, Levy EW, Dambrosia J, Kampen RL, Bruno DA, Kirk AD (2009) Effect of alemtuzumab (Campath 1-H) in patients with inclusion-body myositis. Brain 132:1536–1544

    Article  PubMed  Google Scholar 

  167. Greenberg SA (2010) Comment on alemtuzumab and inclusion body myositis. Brain 133:e135

    Article  PubMed  Google Scholar 

  168. Dalakas MC, Rakocevic G, Schmidt J, McElroy B, Harris-Love MO, Shrader JA, Levy EW, Dambrosia J (2010) Reply: comment on alemtuzumab and inclusion body myositis. Brain 133:e136

    Article  Google Scholar 

  169. Cranmer LD, Hersh E (2007) The role of the CTLA4 blockade in the treatment of malignant melanoma. Cancer Invest 25:613–631

    Article  PubMed  CAS  Google Scholar 

  170. Murata K, Dalakas MC (1999) Expression of the costimulatory molecule BB-1, the ligands CTLA-4 and CD28, and their mRNA in inflammatory myopathies. Am J Pathol 155:453–460

    Article  PubMed  CAS  Google Scholar 

  171. Nagaraju K, Raben N, Vllalba ML, Danning C, Loeffler LA, Lee E, Tresser N, Abati A, Fetsch P, Plotz PH (1999) Costimulatory markers in muscle of patients with idiopathic myopathies and in cultured muscle cells. Clin Immunol 92:161–169

    Article  PubMed  CAS  Google Scholar 

  172. Bayry J (2009) CTLA-4: a key protein in autoimmunity. Nat Rev Rheumatol 5:244–245

    Article  PubMed  CAS  Google Scholar 

  173. Lindvall B, Dahlbom K, Henriksson KG, Srinivas U, Ernerudh L (2003) The expression of adhesion molecules in muscle biopsies: the LFA-1/VLA-4 ration in polymyositis. Acta Neurol Scand 107:134–141

    Article  PubMed  CAS  Google Scholar 

  174. Sallum AM, Kiss MH, Silva CA, Wakamatsu A, Vianna MA, Sachetti S, Marie SK (2006) Difference in adhesion molecule expression (ICAM-1 and VCAM-1) in juvenile and adult dermatomyositis, polymyositis and inclusion body myositis. Autoimmun Rev 5:93–100

    Article  PubMed  CAS  Google Scholar 

  175. Tews DS, Goebel HH (1996) Cytokine expression profile in idiopathic inflammatory myopathies. J Neuropathol Exp Neurol 55:342–347

    Article  PubMed  CAS  Google Scholar 

  176. Cid MC, Grau JM, Casademont J, Tobias E, Picazo A, Coll-Vinent B, Esparza J, Pedrol E, Urbano-Mårquez A (1996) Leucocyte/endothelial cell adhesion receptors in muscle biopsies from patients with idiopathic inflammatory myopathies. Clin Exp Immunol 104:467–473

    PubMed  CAS  Google Scholar 

  177. Jain A, Sharma MC, Sarkar MC, Bhatia R, Singh S, Handa R (2009) Increased expression of cell adhesion molecules in inflammatory myopathies: diagnostic utility and pathogenetic insights. Folia Neuropathol 47:33–42

    PubMed  CAS  Google Scholar 

  178. Rice GP, Hartung HP, Calabresi PA (2005) Anti-alpha 4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology 64:1336–1342

    Article  PubMed  CAS  Google Scholar 

  179. Steinman L (2006) Controlling autoimmunity in sporadic inclusion body myositis. Neurology 66(Suppl):S56–S58

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

The author claims no conflict of interest pertaining to the content of this manuscript.

Ethical standards

No human or animal experiments were performed in preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg-Patrick Stübgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stübgen, JP. Targeted immunotherapy trials for idiopathic inflammatory myopathies. J Neurol 260, 368–385 (2013). https://doi.org/10.1007/s00415-012-6590-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6590-7

Keywords

Navigation