Skip to main content

Advertisement

Log in

Decreased microglial activation in MS patients treated with glatiramer acetate

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Activated microglia are thought to be an important contributor to tissue damage in multiple sclerosis (MS). The level of microglial activation can be measured non-invasively using [11C]-R-PK11195, a radiopharmaceutical for positron emission tomography (PET). Prior studies have identified abnormalities in the level of [11C]-R-PK11195 uptake in patients with MS, but treatment effects have not been evaluated. Nine previously untreated relapsing-remitting MS patients underwent PET and magnetic resonance imaging of the brain at baseline and after 1 year of treatment with glatiramer acetate. Parametric maps of [11C]-R-PK11195 uptake were obtained for baseline and post-treatment PET scans, and the change in [11C]-R-PK11195 uptake pre- to post-treatment was evaluated across the whole brain. Region-of-interest analysis was also applied to selected subregions. Whole brain [11C]-R-PK11195 binding potential per unit volume decreased 3.17% (95% CI: −0.74, −5.53%) between baseline and 1 year (p = 0.018). A significant decrease was noted in cortical gray matter and cerebral white matter, and a trend towards decreased uptake was seen in the putamen and thalamus. The results are consistent with a reduction in inflammation due to treatment with glatiramer acetate, though a larger controlled study would be required to prove that association. Future research will focus on whether the level of baseline microglial activation predicts future tissue damage in MS and whether [11C]-R-PK11195 uptake in cortical gray matter correlates with cortical lesion load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  2. Perry VH, Gordon S (1991) Macrophages and the nervous system. Int Rev Cytol 125:203–244

    Article  PubMed  CAS  Google Scholar 

  3. Guillemin GJ, Brew BJ (2004) Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75:388–397

    Article  PubMed  CAS  Google Scholar 

  4. Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269–287

    Article  PubMed  CAS  Google Scholar 

  5. Dangond F, Windhagen A, Groves CJ, Hafler DA (1997) Constitutive expression of costimulatory molecules by human microglia and its relevance to CNS autoimmunity. J Neuroimmunol 76:132–138

    Article  PubMed  CAS  Google Scholar 

  6. Benveniste EN (1997) Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J Mol Med 75:165–173

    Article  PubMed  CAS  Google Scholar 

  7. Bauer J, Sminia T, Wouterlood FG, Dijkstra CD (1994) Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J Neurosci Res 38:365–375

    Article  PubMed  CAS  Google Scholar 

  8. Brosnan CF, Bornstein MB, Bloom BR (1981) The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J Immunol 126:614–620

    PubMed  CAS  Google Scholar 

  9. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033

    Article  PubMed  CAS  Google Scholar 

  10. Sriram S, Rodriguez M (1997) Indictment of the microglia as the villain in multiple sclerosis. Neurology 48:464–470

    Article  PubMed  CAS  Google Scholar 

  11. Dubois A, Benavides J, Peny B, Duverger D, Fage D, Gotti B, MacKenzie ET, Scatton B (1988) Imaging of primary and remote ischaemic and excitotoxic brain lesions. An autoradiographic study of peripheral type benzodiazepine binding sites in the rat and cat. Brain Res 445:77–90

    Article  PubMed  CAS  Google Scholar 

  12. Myers R, Manjil LG, Cullen BM, Price GW, Frackowiak RS, Cremer JE (1991) Macrophage and astrocyte populations in relation to [3H]PK 11195 binding in rat cerebral cortex following a local ischaemic lesion. J Cereb Blood Flow Metab 11:314–322

    Article  PubMed  CAS  Google Scholar 

  13. Banati RB, Myers R, Kreutzberg GW (1997) PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 26:77–82

    Article  PubMed  CAS  Google Scholar 

  14. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123(Pt 11):2321–2337

    Article  PubMed  Google Scholar 

  15. Casellas P, Galiegue S, Basile AS (2002) Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 40:475–486

    Article  PubMed  CAS  Google Scholar 

  16. Venneti S, Lopresti BJ, Wiley CA (2006) The peripheral benzodiazepine receptor (Translocator protein 18 kDa) in microglia: from pathology to imaging. Prog Neurobiol 80:308–322

    Article  PubMed  CAS  Google Scholar 

  17. Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264

    Article  PubMed  CAS  Google Scholar 

  18. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2005) Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 11:127–134

    Article  PubMed  CAS  Google Scholar 

  19. Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Reynolds R, Nicholas R, Piccini P (2010) Cortical microglial activation is associated with disability in secondary progressive multiple sclerosis: an in vivo imaging study. Neurology 74:A290

    Google Scholar 

  20. Oh U, Fujita M, Ikonomidou VN, Evangelou IE, Matsuura E, Harberts E, Ohayon J, Pike VW, Zhang Y, Zoghbi SS, Innis RB, Jacobson S (2010) Translocator Protein PET Imaging for Glial Activation in Multiple Sclerosis. J Neuroimmune Pharmacol 6:354–361

    Article  PubMed  Google Scholar 

  21. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  22. Shiee N, Bazin PL, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49:1524–1535

    Article  PubMed  Google Scholar 

  23. Kropholler MA, Boellaard R, van Berckel BN, Schuitemaker A, Kloet RW, Lubberink MJ, Jonker C, Scheltens P, Lammertsma AA (2007) Evaluation of reference regions for (R)-[(11)C]PK11195 studies in Alzheimer’s disease and mild cognitive impairment. J Cereb Blood Flow Metab 27:1965–1974

    Article  PubMed  CAS  Google Scholar 

  24. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL (1996) Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab 16:834–840

    Article  PubMed  CAS  Google Scholar 

  25. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  26. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170

    Article  PubMed  CAS  Google Scholar 

  27. Dhib-Jalbut S (2002) Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 58:S3–S9

    Article  PubMed  CAS  Google Scholar 

  28. Kim HJ, Ifergan I, Antel JP, Seguin R, Duddy M, Lapierre Y, Jalili F, Bar-Or A (2004) Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 172:7144–7153

    PubMed  CAS  Google Scholar 

  29. Pul R, Moharregh-Khiabani D, Skuljec J, Skripuletz T, Garde N, Voss EV, Stangel M (2010) Glatiramer acetate modulates TNF-alpha and IL-10 secretion in microglia and promotes their phagocytic activity. J Neuroimmune Pharmacol 6:381–388

    Article  PubMed  Google Scholar 

  30. Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, Stohlman S, Ransohoff R (2007) Evidence for synaptic stripping by cortical microglia. Glia 55:360–368

    Article  PubMed  Google Scholar 

  31. Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59:478–489

    Article  PubMed  CAS  Google Scholar 

  32. Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, Reynolds A, Hilton J, Dannals RF, Kassiou M (2009) Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 50:1276–1282

    Article  PubMed  CAS  Google Scholar 

  33. Ikoma Y, Yasuno F, Ito H, Suhara T, Ota M, Toyama H, Fujimura Y, Takano A, Maeda J, Zhang MR, Nakao R, Suzuki K (2007) Quantitative analysis for estimating binding potential of the peripheral benzodiazepine receptor with [(11)C]DAA1106. J Cereb Blood Flow Metab 27:173–184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by an independent medical grant from TEVA Neuroscience to Dr. Calabresi. The study sponsor had no role in the design or execution of the study, data analysis, manuscript preparation, or decision to submit the paper for publication.

Conflict of interest

Dr. Ratchford receives research support from the Nancy Davis Foundation for Multiple Sclerosis and support for clinical trials from Novartis and Biogen Idec. Dr. Endres, Dr. Hammoud, Dr. Pomper, Mr. Shiee, Dr. McGready, Dr. Pham have nothing to disclose. Dr. Calabresi has received personal compensation for consulting, serving on scientific advisory boards and speaking activities from Biogen-IDEC, Teva, Merck-Serono, Novartis, Vertex, Vaccinex, Genzyme, and Abbott. He has received research funding from Biogen-IDEC, Teva, EMD-Serono, Vertex, Genentech, Abbott, and Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John N. Ratchford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratchford, J.N., Endres, C.J., Hammoud, D.A. et al. Decreased microglial activation in MS patients treated with glatiramer acetate. J Neurol 259, 1199–1205 (2012). https://doi.org/10.1007/s00415-011-6337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-011-6337-x

Keywords

Navigation