Skip to main content
Log in

Levodopa-induced dyskinesias and their management

  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

This paper reviews the epidemiology, pathophysiology, clinical features and rationale for managing dyskinesias associated with Parkinson’s disease. These are a common clinical problem occurring in up to 90 % of patients and more frequently affect those with early-onset. Dyskinesias have a negative impact on quality of life and are an important cause of disability. Their precise etiology is still poorly understood, although it is recognized that dopaminergic pre-synaptic and post-synaptic mechanisms are involved together with extra-dopaminergic factors. The phenomenology of dyskinesias encompasses a variable mixture of two prevalent features: dystonia and chorea. We have studied their time course following a single acute levodopa challenge and have found that dystonia occurs throughout the duration of the on period, whereas choreiform movements occur only at the peak of therapeutic dopaminergic motor responses. This allows a schematic relationship to be drawn between a short duration motor response and the occurrence of dystonia and chorea. There is currently no satisfactory treatment for dyskinesias. Managing the therapeutic window does not provide an adequate solution due to the appearance of a dyskinesia threshold dose that narrows the therapeutic margin. High frequency stimulation of the subthalamic nucleus probably has some specific anti-dyskinetic action, but is limited by the small number of patients who are candidates for this treatment. Research efforts are currently focused on the development of specific anti-dyskinetic medications. Their availability will certainly change the current clinical practice and will widen again the therapeutic window of dopaminergic medications that has now become too narrow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlskog JE, Muenter MD (2001) Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 16:448–458

    Article  PubMed  CAS  Google Scholar 

  2. Albanese A, Valente EM, Romito LM, Bellacchio E, Elia AE, Dallapiccola B (2005) The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology 64:1958–1960

    Article  PubMed  CAS  Google Scholar 

  3. Antonini A, Isaias IU, Canesi M, Zibetti M, Mancini F, Manfredi L, Dal FM, Lopiano L, Pezzoli G (2007) Duodenal levodopa infusion for advanced Parkinson’s disease: 12-month treatment outcome. Mov Disord 22:1145–1149

    Article  PubMed  Google Scholar 

  4. Barbeau A (1969) L-Dopa therapy in Parkinson’s disease: a critical review of nine years’ experience. Can Med Assoc J 101:59–68

    PubMed  CAS  Google Scholar 

  5. Barbeau A (1971) Long-term side-effects of levodopa. Lancet 1:395

    Article  PubMed  CAS  Google Scholar 

  6. Barbeau A (1975) Diphasic dyskinesia during levodopa therapy. Lancet 1:756

    Article  PubMed  CAS  Google Scholar 

  7. Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2:577–588

    Article  PubMed  CAS  Google Scholar 

  8. Blanchet PJ, Calon F, Morissette M, Hadj TA, Belanger N, Samadi P, Grondin R, Gregoire L, Meltzer L, Di PT, Bedard PJ (2004) Relevance of the MPTP primate model in the study of dyskinesia priming mechanisms. Parkinsonism Relat Disord 10:297–304

    Article  PubMed  Google Scholar 

  9. Boyce S, Rupniak NM, Steventon MJ, Iversen SD (1990) Nigrostriatal damage is required for induction of dyskinesias by l-dopa in squirrel monkeys. Clin Neuropharmacol 13:448–458

    Article  PubMed  CAS  Google Scholar 

  10. Bravi D, Mouradian MM, Roberts JW, Davis TL, Sohn YH, Chase TN (1994) Wearing-off fluctuations in Parkinson’s disease: contribution of postsynaptic mechanisms. Ann Neurol 36:27–31

    Article  PubMed  CAS  Google Scholar 

  11. Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20:919–931

    Article  PubMed  Google Scholar 

  12. Brown WD, Taylor MD, Roberts AD, Oakes TR, Schueller MJ, Holden JE, Malischke LM, Dejesus OT, Nickles RJ (1999) FluoroDOPA PET shows the nondopaminergic as well as dopaminergic destinations of levodopa. Neurology 53:1212–1218

    PubMed  CAS  Google Scholar 

  13. Burchiel KJ, Anderson VC, Favre J, Hammerstad JP (1999) Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson’s disease: results of a randomized, blinded pilot study. Neurosurgery 45:1375–1382

    Article  PubMed  CAS  Google Scholar 

  14. Calon F, Rajput AH, Hornykiewicz O, Bedard PJ, Di Paolo T (2003) Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol Dis 14:404–416

    Article  PubMed  CAS  Google Scholar 

  15. Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F (2005) Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord 20:224–230

    Article  PubMed  Google Scholar 

  16. Chase TN, Engber TM, Mouradian MM (1994) Palliative and prophylactic benefits of continuously administered dopaminomimetics in Parkinson’s disease. Neurology 44:S15–S18

    PubMed  CAS  Google Scholar 

  17. Chase TN, Konitsiotis S, Oh JD (2001) Striatal molecular mechanisms and motor dysfunction in Parkinson’s disease. Adv Neurol 86:355–360

    PubMed  CAS  Google Scholar 

  18. Chase TN, Oh JD, Blanchet PJ (1998) Neostriatal mechanisms in Parkinson’s disease. Neurology 51:S30–S35

    PubMed  CAS  Google Scholar 

  19. Chase TN, Oh JD, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247:S36–S42

    Article  Google Scholar 

  20. Cotzias GC, van Woert MH, Schiffer LM (1967) Aromatic amino acids and modification of parkinsonism. N Engl J Med 276:374–379

    PubMed  CAS  Google Scholar 

  21. De la Fuente-Fernandez R (1999) Drug-induced motor complications in dopa-responsive dystonia: implications for the pathogenesis of dyskinesias and motor fluctuations. Clin Neuropharmacol 22:216–219

    PubMed  CAS  Google Scholar 

  22. Durif F, Deffond D, Dordain G, Tournilhac M (1994) Apomorphine and diphasic dyskinesia. Clin Neuropharmacol 17:99–102

    Article  PubMed  CAS  Google Scholar 

  23. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22:1379–1389

    Article  PubMed  Google Scholar 

  24. Fahn S, Elton RL, Members of the UPDRS Development Committee (1987) Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Calne D, Goldstein M (eds) Recent developments in Parkinson’s disease. Macmillan Healthcare Information, Florham Park, pp 153–163

  25. Fox SH, Lang AE, Brotchie JM (2006) Translation of nondopaminergic treatments for levodopa-induced dyskinesia from MPTP-lesioned nonhuman primates to phase IIa clinical studies: keys to success and roads to failure. Mov Disord 21:1578–1594

    Article  PubMed  Google Scholar 

  26. Gerfen CR (1995) Dopamine-receptor function in the basal ganglia. Clin Neuropharmacol 18:S162–S177

    Google Scholar 

  27. Gerfen CR, Engber TM, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250:1429–1432

    Article  PubMed  CAS  Google Scholar 

  28. Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054

    PubMed  CAS  Google Scholar 

  29. Gilgun-Sherki Y, Djaldetti R, Melamed E, Offen D (2004) Polymorphism in candidate genes: implications for the risk and treatment of idiopathic Parkinson’s disease. Pharmacogenomics J 4:291–306

    Article  PubMed  CAS  Google Scholar 

  30. Goetz CG, Damier P, Hicking C, Laska E, Muller T, Olanow CW, Rascol O, Russ H (2007) Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord 22:179–186

    Article  PubMed  Google Scholar 

  31. Goetz CG, Poewe W, Rascol O, Sampaio C (2005) Evidence-based medical review update: pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Mov Disord 20:523–539

    Article  PubMed  Google Scholar 

  32. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    Article  PubMed  CAS  Google Scholar 

  33. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ (1992) What features improve the accuracy of clinical diagnosis in Parkinson’s disease? A clinicopathologic study. Neurology 42:1142–1146

    PubMed  CAS  Google Scholar 

  34. Huntington Study Group (1996) Unified Huntington’s Disease Rating Scale: reliability and consistency. Mov Disord 11:136–142

    Google Scholar 

  35. Isacson O, Hantraye P, Maziere M, Sofroniew MV, Riche D (1990) Apomorphine-induced dyskinesias after excitotoxic caudate-putamen lesions and the effects of neural transplantation in non-human primates. Prog Brain Res 82:523–533

    Article  PubMed  CAS  Google Scholar 

  36. Kaiser R, Hofer A, Grapengiesser A, Gasser T, Kupsch A, Roots I, Brockmoller J (2003) L-dopa-induced adverse effects in PD and dopamine transporter gene polymorphism. Neurology 60:1750–1755

    PubMed  CAS  Google Scholar 

  37. Katzenschlager R, Hughes A, Evans A, Manson AJ, Hoffman M, Swinn L, Watt H, Bhatia K, Quinn N, Lees AJ (2005) Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord 20:151–157

    Article  PubMed  Google Scholar 

  38. Khan NL, Graham E, Critchley P, Schrag AE, Wood NW, Lees AJ, Bhatia KP, Quinn N (2003) Parkin disease: a phenotypic study of a large case series. Brain 126:1279–1292

    Article  PubMed  Google Scholar 

  39. Kleiner-Fisman G, Liang GS, Moberg PJ, Ruocco AC, Hurtig HI, Baltuch GH, Jaggi JL, Stern MB (2007) Subthalamic nucleus deep brain stimulation for severe idiopathic dystonia: impact on severity, neuropsychological status, and quality of life. J Neurosurg 107:29–36

    Article  PubMed  Google Scholar 

  40. Kostic V, Przedborski S, Flaster E, Sternic N (1991) Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology 41:202–205

    PubMed  CAS  Google Scholar 

  41. Krack P, Pollak P, Limousin P, Benazzouz A, Deuschl G, Benabid AL (1999) From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain 122:1133–1146

    Article  PubMed  Google Scholar 

  42. Kumar A, Mann S, Sossi V, Ruth TJ, Stoessl AJ, Schulzer M, Lee CS (2003) [11C]DTBZ-PET correlates of levodopa responses in asymmetric Parkinson’s disease. Brain 126:2648–2655

    Article  PubMed  Google Scholar 

  43. Kumar N, Van Gerpen JA, Bower JH, Ahlskog JE (2005) Levodopa-dyskinesia incidence by age of Parkinson’s disease onset. Mov Disord 20:342–344

    Article  PubMed  Google Scholar 

  44. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord 7:2–13

    Article  PubMed  CAS  Google Scholar 

  45. Lees AJ, Shaw KM, Stern GM (1977) “Off period” dystonia and “on period” choreoathetosis in levodopa-treated patients with Parkinson’s disease. Lancet 2:1034

    Article  PubMed  CAS  Google Scholar 

  46. Linazasoro G (2007) Pathophysiology of motor complications in Parkinson disease: postsynaptic mechanisms are crucial. Arch Neurol 64:137–140

    Article  PubMed  Google Scholar 

  47. Lopez A, Munoz A, Guerra MJ, Labandeira-Garcia JL (2001) Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience 103:639–651

    Article  PubMed  CAS  Google Scholar 

  48. Luginger E, Wenning GK, Bosch S, Poewe W (2000) Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 15:873–878

    Article  PubMed  CAS  Google Scholar 

  49. Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA (1992) Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 7:117–124

    Article  PubMed  CAS  Google Scholar 

  50. Lyons KE, Hubble JP, Troster AI, Pahwa R, Koller WC (1998) Gender differences in Parkinson’s disease. Clin Neuropharmacol 21:118–121

    PubMed  CAS  Google Scholar 

  51. Marconi R, Lefebvre-Caparros D, Bonnet AM, Vidailhet M, Dubois B, Agid Y (1994) Levodopa-induced dyskinesias in Parkinson’s disease phenomenology and pathophysiology. Mov Disord 9:2–12

    Article  PubMed  CAS  Google Scholar 

  52. Marongiu R, Ferraris A, Ialongo T, Michiorri S, Soleti F, Ferrari F, Elia AE, Ghezzi D, Albanese A, Altavista MC, Antonini A, Barone P, Brusa L, Cortelli P, Martinelli P, Pellecchia MT, Pezzoli G, Scaglione C, Stanzione P, Tinazzi M, Zecchinelli A, Zeviani M, Cassetta E, Garavaglia B, Dallapiccola B, Bentivoglio AR, Valente EM (2008) PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum. Hum Mutat 29:565–541

    Article  PubMed  Google Scholar 

  53. Marras C, Lang A, Krahn M, Tomlinson G, Naglie G (2004) Quality of life in early Parkinson’s disease: impact of dyskinesias and motor fluctuations. Mov Disord 19:22–28

    Article  PubMed  Google Scholar 

  54. Marsden CD, Parkes JD (1976) “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet 1:292–296

    Article  PubMed  CAS  Google Scholar 

  55. Metman LV, Konitsiotis S, Chase TN (2000) Pathophysiology of motor response complications in Parkinson’s disease: hypotheses on the why, where, and what. Mov Disord 15:3–8

    Article  PubMed  CAS  Google Scholar 

  56. Metman LV, van den Munckhof P, Klaassen AA, Blanchet P, Mouradian MM, Chase TN (1997) Effects of supra-threshold levodopa doses on dyskinesias in advanced Parkinson’s disease. Neurology 49:711–713

    PubMed  CAS  Google Scholar 

  57. Moro E, Scerrati M, Romito LM, Roselli R, Tonali P, Albanese A (1999) Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson’s disease. Neurology 53:85–90

    PubMed  CAS  Google Scholar 

  58. Muenter MD, Sharpless NS, Tyce GM, Darley FL (1977) Patterns of dystonia (‘I-D-I’ and ‘D-I-D’) in response to L-dopa therapy for Parkinson’s disease. Mayo Clin Proc 52:163–174

    PubMed  CAS  Google Scholar 

  59. Nash JE, Brotchie JM (2000) A common signaling pathway for striatal NMDA and adenosine A2a receptors: implications for the treatment of Parkinson’s disease. J Neurosci 20:7782–7789

    PubMed  CAS  Google Scholar 

  60. Nilsson D, Nyholm D, Aquilonius SM (2001) Duodenal levodopa infusion in Parkinson’s disease – long-term experience. Acta Neurol Scand 104:343–348

    Article  PubMed  CAS  Google Scholar 

  61. Nutt JG, Holford NH (1996) The response to levodopa in Parkinson’s disease: imposing pharmacological law and order. Ann Neurol 39:561–573

    Article  PubMed  CAS  Google Scholar 

  62. Nutt JG, Woodward WR, Hammerstad JP, Carter JH, Anderson JL (1984) The “on-off” phenomenon in Parkinson’s disease. Relation to levodopa absorption and transport. N Engl J Med 310:483–488

    PubMed  CAS  Google Scholar 

  63. Nyholm D, Askmark H, Gomes-Trolin C, Knutson T, Lennernas H, Nystrom C, Aquilonius SM (2003) Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol 26:156–163

    Article  PubMed  CAS  Google Scholar 

  64. Nyholm D, Nilsson Remahl AI, Dizdar N, Constantinescu R, Holmberg B, Jansson R, Aquilonius SM, Askmark H (2005) Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 64:216–223

    PubMed  CAS  Google Scholar 

  65. Obeso JA, Luquin MR, Martinez Lage JM (1986) Intravenous lisuride corrects oscillations of motor performance in Parkinson’s disease. Ann Neurol 19:31–35

    Article  PubMed  CAS  Google Scholar 

  66. Obeso JA, Luquin MR, Vaamonde J, Grandas F, Martinez Lage JM (1987) Continuous dopaminergic stimulation in Parkinson’s disease. Can J Neurol Sci 14:488–492

    PubMed  CAS  Google Scholar 

  67. Olanow CW, Obeso JA (2000) Preventing levodopa-induced dyskinesias. Ann Neurol 47:S167–S176

    PubMed  CAS  Google Scholar 

  68. Oliveri RL, Annesi G, Zappia M, Civitelli D, Montesanti R, Branca D, Nicoletti G, Spadafora P, Pasqua AA, Cittadella R, Andreoli V, Gambardella A, Aguglia U, Quattrone A (1999) Dopamine D2 receptor gene polymorphism and the risk of levodopa-induced dyskinesias in PD. Neurology 53:1425–1430

    PubMed  CAS  Google Scholar 

  69. Pahwa R, Factor SA, Lyons KE, Ondo WG, Gronseth G, Bronte-Stewart H, Hallett M, Miyasaki J, Stevens J, Weiner WJ (2006) Practice parameter: treatment of Parkinson disease with motor fluctuations and dyskinesia (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 66:983–995

    Article  PubMed  CAS  Google Scholar 

  70. Parkinson Study Group (1996) Impact of deprenyl and tocopherol treatment on Parkinson’s disease in DATATOP patients requiring levodopa. Ann Neurol 39:37–45

    Google Scholar 

  71. Pechevis M, Clarke CE, Vieregge P, Khoshnood B, Deschaseaux-Voinet C, Berdeaux G, Ziegler M (2005) Effects of dyskinesias in Parkinson’s disease on quality of life and health-related costs: a prospective European study. Eur J Neurol 12:956–963

    Article  PubMed  CAS  Google Scholar 

  72. Quinn N, Parkes JD, Marsden CD (1984) Control of on/off phenomenon by continuous intravenous infusion of levodopa. Neurology 34:1131–1136

    PubMed  CAS  Google Scholar 

  73. Rascol O, Brooks DJ, Korczyn AD, De Deyn PP, Clarke CE, Lang AE, Abdalla M (2006) Development of dyskinesias in a 5-year trial of ropinirole and L-dopa. Mov Disord 21:1844–1850

    Article  PubMed  Google Scholar 

  74. Sage JI, McHale DM, Sonsalla P, Vitagliano D, Heikkila RE (1989) Continuous levodopa infusions to treat complex dystonia in Parkinson’s disease. Neurology 39:888–891

    PubMed  CAS  Google Scholar 

  75. Saint-Cyr JA, Albanese A (2006) STN DBS in PD: selection criteria for surgery should include cognitive and psychiatric factors. Neurology 66:1799–1800

    Article  PubMed  Google Scholar 

  76. Samadi P, Gregoire L, Morissette M, Calon F, Hadj TA, Belanger N, Dridi M, Bedard PJ, Di PT (2008) Basal ganglia group II metabotropic glutamate receptors specific binding in non-human primate model of L-Dopa-induced dyskinesias. Neuropharmacology 54:258–268

    Article  PubMed  CAS  Google Scholar 

  77. Santini E, Valjent E, Fisone G (2008) Parkinson’s disease: levodopa-induced dyskinesia and signal transduction. FEBS J 275:1392–1399

    Article  PubMed  CAS  Google Scholar 

  78. Schneider JS (1989) Levodopa-induced dyskinesias in parkinsonian monkeys: relationship to extent of nigrostriatal damage. Pharmacol Biochem Behav 34:193–196

    Article  PubMed  CAS  Google Scholar 

  79. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M (2003) Young- versus older-onset Parkinson’s disease: impact of disease and psychosocial consequences. Mov Disord 18:1250–1256

    Article  PubMed  Google Scholar 

  80. Schrag A, Quinn N (2000) Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain 123:2297–2305

    Article  PubMed  Google Scholar 

  81. Schrag A, Schott JM (2006) Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol 5:355–363

    Article  PubMed  CAS  Google Scholar 

  82. Stocchi F, Ruggieri S, Vacca L, Olanow CW (2002) Prospective randomized trial of lisuride infusion versus oral levodopa in patients with Parkinson’s disease. Brain 125:2058–2066

    Article  PubMed  Google Scholar 

  83. The Deep-Brain Stimulation for Parkinson’s Disease Study Group (2001) Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345:956–963

    Google Scholar 

  84. Verhagen Metman L, Del Dotto P, van den Munckhof P, Fang J, Mouradian MM, Chase TN (1998) Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology 50:1323–1326

    PubMed  CAS  Google Scholar 

  85. Vidailhet M, Bonnet AM, Marconi R, Gouiderkhouja N, Agid Y (1994) Do parkinsonian symptoms and levodopa-induced dyskinesias start in the foot? Neurology 44:1613–1616

    PubMed  CAS  Google Scholar 

  86. Zappia M, Annesi G, Nicoletti G, Arabia G, Annesi F, Messina D, Pugliese P, Spadafora P, Tarantino P, Carrideo S, Civitelli D, De Marco EV, Ciro-Candiano IC, Gambardella A, Quattrone A (2005) Sex differences in clinical and genetic determinants of levodopa peak-dose dyskinesias in Parkinson disease: an exploratory study. Arch Neurol 62:601–605

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Albanese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Del Sorbo, F., Albanese, A. Levodopa-induced dyskinesias and their management. J Neurol 255 (Suppl 4), 32–41 (2008). https://doi.org/10.1007/s00415-008-4006-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-008-4006-5

Key words

Navigation